Tag Archives: LTE

SQN Sync in IMS Auth

So the issue was a head scratcher.

Everything was working on the IMS, then I go to bed, the next morning I fire up the test device and it just won’t authenticate to the IMS – The S-CSCF generated a 401 in response to the REGISTER, but the next REGISTER wouldn’t pass.

Wireshark just shows me this loop:

UE -> IMS: REGISTER
IMS -> UE: 401 Unauthorized (With Challenge)
UE -> IMS: REGISTER with response
IMS -> UE: 401 Unauthorized (With Challenge)
UE -> IMS: REGISTER with response
IMS -> UE: 401 Unauthorized (With Challenge)
UE -> IMS: REGISTER with response
IMS -> UE: 401 Unauthorized (With Challenge)

So what’s going on here?

IMS uses AKAv1-MD5 for Authentication, this is slightly different to the standard AKA auth used in cellular, but if you’re curious, we’ve covered by IMS Authentication and standard AKA based SIM Authentication in cellular networks before.

When we generate the vectors (for IMS auth and standard auth) one of the inputs to generate the vectors is the Sequence Number or SQN.

This SQN ticks over like an odometer for the number of times the SIM / HSS authentication process has been performed.

There is some leeway in the SQN – It may not always match between the SIM and the HSS and that’s to be expected.
When the MME sends an Authentication-Information-Request it can ask for multiple vectors so it’s got some in reserve for the next time the subscriber attaches, and that’s allowed.

Information stored on USIM / SIM Card for LTE / EUTRAN / EPC - K key, OP/OPc key and SQN Sequence Number

But there are limits to how far out our SQN can be, and for good reason – One of the key purposes for the SQN is to protect against replay attacks, where the same vector is replayed to the UE. So the SQN on the HSS can be ahead of the SIM (within reason), but it can’t be behind – Odometers don’t go backwards.

So the issue was with the SQN on the SIM being out of Sync with the SQN in the IMS, how do we know this is the case, and how do we fix this?

Well there is a resync mechanism so the SIM can securely tell the HSS what the current SQN it is using, so the HSS can update it’s SQN.

When verifying the AUTN, the client may detect that the sequence numbers between the client and the server have fallen out of sync.
In this case, the client produces a synchronization parameter AUTS, using the shared secret K and the client sequence number SQN.
The AUTS parameter is delivered to the network in the authentication response, and the authentication can be tried again based on authentication vectors generated with the synchronized sequence number.

RFC 3110: HTTP Digest Authentication using AKA

In our example we can tell the sub is out of sync as in our Multimedia Authentication Request we see the SIP-Authorization AVP, which contains the AUTS (client synchronization parameter) which the SIM generated and the UE sent back to the S-CSCF. Our HSS can use the AUTS value to determine the correct SQN.

SIP-Authorization AVP in the Multimedia Authentication Request means the SQN is out of Sync and this AVP contains the RAND and AUTN required to Resync

Note: The SIP-Authorization AVP actually contains both the RAND and the AUTN concatenated together, so in the above example the first 32 bytes are the AUTN value, and the last 32 bytes are the RAND value.

So the HSS gets the AUTS and from it is able to calculate the correct SQN to use.

Then the HSS just generates a new Multimedia Authentication Answer with a new vector using the correct SQN, sends it back to the IMS and presto, the UE can respond to the challenge normally.

This feature is now fully implemented in PyHSS for anyone wanting to have a play with it and see how it all works.

And that friends, is how we do SQN resync in IMS!

Getting to know the PCRF for traffic Policy, Rules & Rating

Misunderstood, under appreciated and more capable than people give it credit for, is our PCRF.

But what does it do?

Most folks describe the PCRF in hand wavy-terms – “it does policy and charging” is the answer you’ll get, but that doesn’t really tell you anything.

So let’s answer it in a way that hopefully makes some practical sense, starting with the acronym “PCRF” itself, it stands for Policy and Charging Rules Function, which is kind of two functions, one for policy and one for rules, so let’s take a look at both.

Policy

In cellular world, as in law, policy is the rules.

For us some examples of policy could be a “fair use policy” to limit customer usage to acceptable levels, but it can also be promotional packages, services like “free Spotify” packages, “Voice call priority” or “unmetered access to Nick’s Blog and maximum priority” packages, can be offered to customers.

All of these are examples of policy, and to make them work we need to target which subscribers and traffic we want to apply the policy to, and then apply the policy.

Charging Rules

Charging Rules are where the policy actually gets applied and the magic happens.

It’s where we take our policy and turn it into actionable stuff for the cellular world.

Let’s take an example of “unmetered access to Nick’s Blog and maximum priority” as something we want to offer in all our cellular plans, to provide access that doesn’t come out of your regular usage, as well as provide QCI 5 (Highest non dedicated QoS) to this traffic.

To achieve this we need to do 3 things:

  • Profile the traffic going to this website (so we capture this traffic and not regular other internet traffic)
  • Charge it differently – So it’s not coming from the subscriber’s regular balance
  • Up the QoS (QCI) on this traffic to ensure it’s high priority compared to the other traffic on the network

So how do we do that?

Profiling Traffic

So the first step we need to take in providing free access to this website is to filter out traffic to this website, from the traffic not going to this website.

Let’s imagine that this website is hosted on a single machine with the IP 1.2.3.4, and it serves traffic on TCP port 443. This is where IPFilterRules (aka TFTs or “Traffic Flow Templates”) and the Flow-Description AVP come into play. We’ve covered this in the past here, but let’s recap:

IPFilterRules are defined in the Diameter Base Protocol (IETF RFC 6733), where we can learn the basics of encoding them,

They take the format:

action dir proto from src to dst

The action is fairly simple, for all our Dedicated Bearer needs, and the Flow-Description AVP, the action is going to be permit. We’re not blocking here.

The direction (dir) in our case is either in or out, from the perspective of the UE.

Next up is the protocol number (proto), as defined by IANA, but chances are you’ll be using 17 (UDP) or 6 (TCP).

The from value is followed by an IP address with an optional subnet mask in CIDR format, for example from 10.45.0.0/16 would match everything in the 10.45.0.0/16 network.

Following from you can also specify the port you want the rule to apply to, or, a range of ports.

Like the from, the to is encoded in the same way, with either a single IP, or a subnet, and optional ports specified.

And that’s it!

So let’s create a rule that matches all traffic to our website hosted on 1.2.3.4 TCP port 443,

permit out 6 from 1.2.3.4 443 to any 1-65535
permit out 6 from any 1-65535 to 1.2.3.4 443

All this info gets put into the Flow-Information AVPs:

With the above, any traffic going to/from 1.23.4 on port 443, will match this rule (unless there’s another rule with a higher precedence value).

Charging Actions

So with our traffic profiled, the next question is what actions are we going to take, well there’s two, we’re going to provide unmetered access to the profiled traffic, and we’re going to use QCI 4 for the traffic (because you’ll need a guaranteed bit rate bearer to access!).

Charging-Group for Profiled Traffic

To allow for Zero Rating for traffic matching this rule, we’ll need to use a different Rating Group.

Let’s imagine our default rating group for data is 10000, then any normal traffic going to the OCS will use rating group 10000, and the OCS will apply the specific rates and policies based on that.

Rating Groups are defined in the OCS, and dictate what rates get applied to what Rating Groups.

For us, our default rating group will be charged at the normal rates, but we can define a rating group value of 4000, and set the OCS to provide unlimited traffic to any Credit-Control-Requests that come in with Rating Group 4000.

This is how operators provide services like “Unlimited Facebook” for example, a Charging Rule matches the traffic to Facebook based on TFTs, and then the Rating Group is set differently to the default rating group, and the OCS just allows all traffic on that rating group, regardless of how much is consumed.

Inside our Charging-Rule-Definition, we populate the Rating-Group AVP to define what Rating Group we’re going to use.

Setting QoS for Profiled Traffic

The QoS Description AVP defines which QoS parameters (QCI / ARP / Guaranteed & Maximum Bandwidth) should be applied to the traffic that matches the rules we just defined.

As mentioned at the start, we’ll use QCI 4 for this traffic, and allocate MBR/GBR values for this traffic.

Putting it Together – The Charging Rule

So with our TFTs defined to match the traffic, our Rating Group to charge the traffic and our QoS to apply to the traffic, we’re ready to put the whole thing together.

So here it is, our “Free NVN” rule:

I’ve attached a PCAP of the flow to this post.

In our next post we’ll talk about how the PGW handles the installation of this rule.

Failures in cobbling together a USSD Gateway

One day recently I was messing with the XCAP server, trying to set the Call Forward timeout. In the process I triggered the UE to send a USSD request to the IMS.

Huh, I thought, “I wonder how hard it would be to build a USSD Gateway for our IMS?”, and this my friends, is the story of how I wasted a good chunk of my weekend trying (and failing) to add support for USSD.

You might be asking “Who still uses USSD?” – The use cases for USSD are pretty thin on the ground in this day and age, but I guess balance query, and uh…

But this is the story of what I tried before giving up and going outside…

Routing

First I’d need to get the USSD traffic towards the USSD Gateway, this means modifying iFCs. Skimming over the spec I can see the Recv-Info: header for USSD traffic should be set to “g.3gpp.ussd” so I knocked up an iFC to match that, and route the traffic to my dev USSD Gateway, and added it to the subscriber profile in PyHSS:

  <!-- SIP USSD Traffic to USSD-GW-->
        <InitialFilterCriteria>
            <Priority>25</Priority>
            <TriggerPoint>
                <ConditionTypeCNF>1</ConditionTypeCNF>
                <SPT>
                    <ConditionNegated>0</ConditionNegated>
                    <Group>1</Group>
                    <SIPHeader>
                      <Header>Recv-Info</Header>
                      <Content>"g.3gpp.ussd"</Content>
                    </SIPHeader>
                </SPT>                
            </TriggerPoint>
            <ApplicationServer>
                <ServerName>sip:ussdgw:5060</ServerName>
                <DefaultHandling>0</DefaultHandling>
            </ApplicationServer>
        </InitialFilterCriteria>

Easy peasy, now we have the USSD requests hitting our USSD Gateway.

The Response

I’ll admit that I didn’t jump straight to the TS doc from the start.

The first place I headed was Google to see if I could find any PCAPs of USSD over IMS/SIP.

And I did – Restcomm seems to have had a USSD product a few years back, and trawling around their stuff provided some reference PCAPs of USSD over SIP.

So the flow seemed pretty simple, SIP INVITE to set up the session, SIP INFO for in-dialog responses and a BYE at the end.

With all the USSD guts transferred as XML bodies, in a way that’s pretty easy to understand.

Being a Kamailio fan, that’s the first place I started, but quickly realised that SIP proxies, aren’t great at acting as the UAS.

So I needed to generate in-dialog SIP INFO messages, so I turned to the UAC module to generate the SIP INFO response.

My Kamailio code is super simple, but let’s have a look:

request_route {

        xlog("Request $rm from $fU");

        if(is_method("INVITE")){
                xlog("USSD from $fU to $rU (Emergency number) CSeq is $cs ");
                sl_reply("200", "OK Trying USSD Phase 1");      #Generate 200 OK
                route("USSD_Response"); #Call USSD_Response route block
                exit;
        }
}

route["USSD_Response"]{
        xlog("USSD_Response Route");
        #Generate a new UAC Request
        $uac_req(method)="INFO";
        $uac_req(ruri)=$fu;     #Copy From URI to Request URI
        $uac_req(furi)=$tu;     #Copy To URI to From URI
        $uac_req(turi)=$fu;     #Copy From URI to To URI
        $uac_req(callid)=$ci;   #Copy Call-ID
                                #Set Content Type to 3GPP USSD
        $uac_req(hdrs)=$uac_req(hdrs) + "Content-Type: application/vnd.3gpp.ussd+xml\r\n";
                                #Set the USSD XML Response body
        $uac_req(body)="<?xml version='1.0' encoding='UTF-8'?>
        <ussd-data>
                <language value=\"en\"/>
                <ussd-string value=\"Bienvenido. Seleccione una opcion: 1 o 2.\"/>
        </ussd-data>";
        $uac_req(evroute)=1;    #Set the event route to use on return replies
        uac_req_send();         #Send it!
}

So the UAC module generates the 200 OK and sends it back.

“That was quick” I told myself, patting myself on the back before trying it out for the first time.

Huston, we have a problem – Although the Call-ID is the same, it’s not an in-dialog response as the tags aren’t present, this means our UE send back a 405 to the SIP INFO.

Right. Perhaps this is the time to read the Spec…

Okay, so the SIP INFO needs to be in dialog. Can we do that with the UAC module? Perhaps not…

But the Transaction Module ™ in Kamailio exposes and option on the ctl API to generate an in-dialog UAC – this could be perfect…

But alas real life came back to rear its ugly head, and this adventure will have to continue another day…

Update: Thanks to a kindly provided PCAP I now know what I was doing wrong, and so we’ll soon have a follow up to this post named “Successes in cobbling together a USSD Gateway” just as soon as I have a weekend free.

NB-IoT NIDD Basics

NB-IoT introduces support for NIDD – Non-IP Data Delivery (NIDD) which is one of the cool features of NB-IoT that’s gaining more widespread adoption.

Let’s take a deep dive into NIDD.

The case against IP for IoT

In the over 40 years since IP was standardized, we’ve shoehorned many things onto IP, but IP was never designed or optimized for low power, low throughput applications.

For the battery life of an IoT device to be measured in years, it has to be very selective about what power hungry operations it does. Transmitting data over the air is one of the most power-intensive operations an IoT device can perform, so we need to do everything we can to limit how much data is sent, and how frequently.

Use Case – NB-IoT Tap

Let’s imagine we’re launching an IoT tap that transmits information about water used, as part of our revolutionary new “Water as a Service” model (WaaS) which removes the capex for residents building their own water treatment plant in their homes, and instead allows dynamic scaling of waterloads as they move to our new opex model.

If I turn on the tap and use 12L of water, when I turn off the tap, our IoT tap encodes the usage onto a single byte and sends the usage information to our rain-cloud service provider.

So we’re not constantly changing the batteries in our taps, we need to send this one byte of data as efficiently as possible, so as to maximize the battery life.

If we were to transport our data on TCP, well we’d need a 3 way handshake and several messages just to transmit the data we want to send.

Let’s see how our one byte of data would look if we transported it on TCP.

That sliver of blue in the diagram is our usage component, the rest is overhead used to get it there. Seems wasteful huh?

Sure, TCP isn’t great for this you say, you should use UDP! But even if we moved away from TCP to UDP, we’ve still got the IPv4 header and the UDP header wasting 28 bytes.

For efficiency’s sake (To keep our batteries lasting as long as possible) we want to send as few messages as possible, and where we do have to send messages, keep them very short, so IP is not a great fit here.

Enter NIDD – Non-IP Data Delivery.

Through NIDD we can just send the single hex byte, only be charged for the single hex byte, and only stay transmitting long enough to send this single byte of hex (Plus the NBIoT overheads / headers).

Compared to UDP transport, NIDD provides us a reduction of 28 bytes of overhead for each message, or a 96% reduction in message size, which translates to real power savings for our IoT device.

In summary – the more sending your device has to do, the more battery it consumes.
So in a scenario where you’re trying to maximize power efficiency to keep your batter powered device running as long as possible, needing to transmit 28 bytes of wasted data to transport 1 byte of usable data, is a real waste.

Delivering the Payload

NIDD traffic is transported as raw hex data end to end, this means for our 1 byte of water usage data, the device would just send the hex value to be transferred and it’d pop out the other end.

To support this we introduce a new network element called the SCEFService Capability Exposure Function.

From a developer’s perspective, the SCEF is the gateway to our IoT devices. Through the RESTful API on the SCEF (T8 API), we can send and receive raw hex data to any of our IoT devices.

When one of our Water-as-a-Service Taps sends usage data as a hex byte, it’s the software talking on the T8 API to the SCEF that receives this data.

Data of course needs to be addressed, so we know where it’s coming from / going to, and T8 handles this, as well as message reliability, etc, etc.

This is a telco blog, so we should probably cover the MME connection, the MME talks via Diameter to the SCEF. In our next post we’ll go into these signaling flows in more detail.

If you’re wondering what the status of Open Source SCEF implementations are, then you may have already guessed I’m working on one!

Hopefully by now you’ve got a bit of an idea of how NIDD works in NB-IoT, and in our next posts we’ll dig deeper into the flows and look at some PCAPs together.

Diameter Routing Agents – Part 5 – AVP Transformations

Having a central pair of Diameter routing agents allows us to drastically simplify our network, but what if we want to perform some translations on AVPs?

For starters, what is an AVP transformation? Well it’s simply rewriting the value of an AVP as the Diameter Request/Response passes through the DRA. A request may come into the DRA with IMSI xxxxxx and leave with IMSI yyyyyy if a translation is applied.

So why would we want to do this?

Well, what if we purchased another operator who used Realm X, and we use Realm Y, and we want to link the two networks, then we’d need to rewrite Realm Y to Realm X, and Realm X to Realm Y when they communicate, AVP transformations allow for this.

If we’re an MVNO with hosted IMSIs from an MNO, but want to keep just the one IMSI in our HSS/OCS, we can translate from the MNO hosted IMSI to our internal IMSI, using AVP transformations.

If our OCS supports only one rating group, and we want to rewrite all rating groups to that one value, AVP transformations cover this too.

There are lots of uses for this, and if you’ve worked with a bit of signaling before you’ll know that quite often these sorts of use-cases come up.

So how do we do this with freeDiameter?

To handle this I developed a module for passing each AVP to a Python function, which can then apply any transformation to a text based value, using every tool available to you in Python.

In the next post I’ll introduce rt_pyform and how we can use it with Python to translate Diameter AVPs.

Diameter Routing Agents (Why you need them, and how to build them) – Part 2 – Routing

What I typically refer to as Diameter interfaces / reference points, such as S6a, Sh, Sx, Sy, Gx, Gy, Zh, etc, etc, are also known as Applications.

Diameter Application Support

If you look inside the Capabilities Exchange Request / Answer dialog, what you’ll see is each side advertising the Applications (interfaces) that they support, each one being identified by an Application ID.

CER showing support for the 3GPP Zh Application-ID (Interface)

If two peers share a common Application-Id, then they can communicate using that Application / Interface.

For example, the above screenshot shows a peer with support for the Zh Interface (Spoiler alert, XCAP Gateway / BSF coming soon!). If two Diameter peers both have support for the Zh interface, then they can use that to send requests / responses to each other.

This is the basis of Diameter Routing.

Diameter Routing Tables

Like any router, our DRA needs to have logic to select which peer to route each message to.

For each Diameter connection to our DRA, it will build up a Diameter Routing table, with information on each peer, including the realm and applications it advertises support for.

Then, based on the logic defined in the DRA to select which Diameter peer to route each request to.

In its simplest form, Diameter routing is based on a few things:

  1. Look at the DestinationRealm, and see if we have any peers at that realm
  2. If we do then look at the DestinationHost, if that’s set, and the host is connected, and if it supports the specified Application-Id, then route it to that host
  3. If no DestinationHost is specified, look at the peers we have available and find the one that supports the specified Application-Id, then route it to that host
Simplified Diameter Routing Table used by DRAs

With this in mind, we can go back to looking at how our DRA may route a request from a connected MME towards an HSS.

Let’s look at some examples of this at play.

The request from MME02 is for DestinationRealm mnc001.mcc001.3gppnetwork.org, which our DRA knows it has 4 connected peers in (3 if we exclude the source of the request, as we don’t want to route it back to itself of course).

So we have 3 contenders still for who could get the request, but wait! We have a DestinationHost specified, so the DRA confirms the host is available, and that it supports the requested ApplicationId and routes it to HSS02.

So just because we are going through a DRA does not mean we can’t specific which destination host we need, just like we would if we had a direct link between each Diameter peer.

Conversely, if we sent another S6a request from MME01 but with no DestinationHost set, let’s see how that would look.

Again, the request is from MME02 is for DestinationRealm mnc001.mcc001.3gppnetwork.org, which our DRA knows it has 3 other peers it could route this to. But only two of those peers support the S6a Application, so the request would be split between the two peers evenly.

Clever Routing with DRAs

So with our DRA in place we can simplify the network, we don’t need to build peer links between every Diameter device to every other, but let’s look at some other ways DRAs can help us.

Load Control

We may want to always send requests to HSS01 and only use HSS02 if HSS01 is not available, we can do this with a DRA.

Or we may want to split load 75% on one HSS and 25% on the other.

Both are great use cases for a DRA.

Routing based on Username

We may want to route requests in the DRA based on other factors, such as the IMSI.

Our IMSIs may start with 001010001xxx, but if we introduced an MVNO with IMSIs starting with 001010002xxx, we’d need to know to route all traffic where the IMSI belongs to the home network to the home network HSS, and all the MVNO IMSI traffic to the MVNO’s HSS, and DRAs handle this.

Inter-Realm Routing

One of the main use cases you’ll see for DRAs is in Roaming scenarios.

For example, if we have a roaming agreement with a subscriber who’s IMSIs start with 90170, we can route all the traffic for their subs towards their HSS.

But wait, their Realm will be mnc901.mcc070.3gppnetwork.org, so in that scenario we’ll need to add a rule to route the request to a different realm.

DRAs handle this also.

In our next post we’ll start actually setting up a DRA with a default route table, and then look at some more advanced options for Diameter routing like we’ve just discussed.

One slight caveat, is that mutual support does not always mean what you may expect.
For example an MME and an HSS both support S6a, which is identified by Auth-Application-Id 16777251 (Vendor ID 10415), but one is a client and one is a server.
Keep this in mind!

Diameter Routing Agents (Why you need them, and how to build them) – Part 1

Answer Question 1: Because they make things simpler and more flexible for your Diameter traffic.
Answer Question 2: With free software of course!

All about DRAs

But let’s dive a little deeper. Let’s look at the connection between an MME and an HSS (the S6a interface).

Direct Diameter link between two Diameter Peers

We configure the Diameter peers on MME1 and HSS01 so they know about each other and how to communicate, the link comes up and presto, away we go.

But we’re building networks here! N+1 redundancy and all that, so now we have two HSSes and two MMEs.

Direct Diameter link between 4 Diameter peers

Okay, bit messy, but that’s okay…

But then our network grows to 10 MMEs, and 3 HSSes and you can probably see where this is going, but let’s drive the point home.

Direct Diameter connections for a network with 10x MME and 3x HSS

Now imagine once you’ve set all this up you need to do some maintenance work on HSS03, so need to shut down the Diameter peer on 10 different MMEs in order to isolate it and deisolate it.

The problem here is pretty evident, all those links are messy, cumbersome and they just don’t scale.

If you’re someone with a bit of networking experience (and let’s face it, you’re here after all), then you’re probably thinking “What if we just had a central system to route all the Diameter messages?”

An Agent that could Route Diameter, a Diameter Routing Agent perhaps…

By introducing a DRA we build Diameter peer links between each of our Diameter devices (MME / HSS, etc) and the DRA, rather than directly between each peer.

Then from the DRA we can route Diameter requests and responses between them.

Let’s go back to our 10x MME and 3x HSS network and see how it looks with a DRA instead.

So much cleaner!

Not only does this look better, but it makes our life operating the network a whole lot easier.

Each MME sends their S6a traffic to the DRA, which finds a healthy HSS from the 3 and sends the requests to it, and relays the responses as well.

We can do clever load balancing now as well.

Plus if a peer goes down, the DRA detects the failure and just routes to one of the others.

If we were to introduce a new HSS, we wouldn’t need to configure anything on the MMEs, just add HSS04 to the DRA and it’ll start getting traffic.

Plus from an operations standpoint, now if we want to to take an HSS offline for maintenance, we just shut down the link on the HSS and all HSS traffic will get routed to the other two HSS instances.

In our next post we’ll talk about the Routing part of the DRA, how the decisions are made and all the nuances, and then in the following post we’ll actually build a DRA and start routing some traffic around!

Filtering for 3GPP DNS in Wireshark

If you work with IMS or Packet Core, there’s a good chance you need DNS to work, and it doesn’t always.

When I run traces, I’ve always found I get swamped with DNS traffic, UE traffic, OS monitoring, updates, etc, all combine into a big firehose – while my Wireshark filters for finding EPC and IMS traffic is pretty good, my achilles heel has always been filtering the DNS traffic to just get the queries and responses I want out of it.

Well, today I made that a bit better.

By adding this to your Wireshark filter:

dns contains 33:67:70:70:6e:65:74:77:6f:72:6b:03:6f:72:67:00

You’ll only see DNS Queries and Responses for domains at the 3gppnetwork.org domain.

This makes my traces much easier to read, and hopefully will do the same for you!

Bonus, here’s my current Wireshark filter for working EPC/IMS:

(diameter and diameter.cmd.code != 280) or  (sip and !(sip.Method == "OPTIONS") and !(sip.CSeq.method == "OPTIONS")) or (smpp and (smpp.command_id != 0x00000015 and smpp.command_id != 0x80000015)) or (mgcp and !(mgcp.req.verb == "AUEP") and !(mgcp.rsp.rspcode == 500)) or isup or sccp or rtpevent or s1ap or gtpv2 or pfcp or (dns contains 33:67:70:70:6e:65:74:77:6f:72:6b:03:6f:72:67:00)

Testing Mobile Networks with Remote Test Phones

I build phone networks, and unfortunately, I’m not able to be everywhere at once.

This means sometimes I have to test things in networks I may not be within the coverage of.

To get around this, I’ve setup something pretty simple, but also pretty powerful – Remote test phones.

Using a Raspberry Pi, Intel NUC, or any old computer, I’m able to remotely control Android handsets out in the field, in the coverage footprint of whatever network I need.

This means I can make test calls, run speed testing, signal strength measurements, on real phones out in the network, without leaving my office.

Base OS

Because of some particularities with Wayland and X11, for this I’d steer clear of Ubuntu distributions, and suggest using Debian if you’re using x86 hardware, and Raspbian if you’re using a Pi.

Setup Android Debug Bridge (adb)

The base of this whole system is ADB, the Android Debug Bridge, which exposes the ability to remotely control an Android phone over USB.

You can also do this over WiFi, but I find for device testing, wired allows me to airplane mode a device or disable data, which I can’t do if the device is connected to ADB via WiFi.

There’s lot of info online about setting Android Debug Bridge up on your device, unlocking the Developer Mode settings, etc, if you’ve not done this before I’ll just refer you to the official docs.

Before we plug in the phones we’ll need to setup the software on our remote testing machine, which is simple enough:

[email protected]:~$ sudo apt install android-tools-adb
sudo apt install android-tools-fastboot

Now we can plug in each of the remote phones we want to use for testing and run the command “adb devices” which should list the phones with connected to the machine with ADB enabled:

[email protected]:~$ adb devices
List of devices attached
ABCDEFGHIJK	unauthenticated
LMNOPQRSTUV	unauthenticated

You’ll get a popup on each device asking if you want to allow USB debugging – If this is going to be a set-and-forget deployment, make sure you tick “Always allow from this Computer” so you don’t have to drive out and repeat this step, and away you go.

How to Access Developer Options and Enable USB Debugging on Android

Lastly we can run adb devices again to confirm everything is in the connected state

Scrcpy

scrcpy an open-source remote screen mirror / controller that allows us to control Android devices from a computer.

In our case we’re going to install with Snap (if you hate snaps as many folks do, you can also compile from source):

[email protected]:~$ snap install scrcpy

Remote Access

If you’re a regular Linux user, the last bit is the easiest.

We’re just going to use SSH to access the Linux machine, but with X11 forwarding.

If you’ve not come across X11 fowarding before, from a Linux machine just add the -X option to your SSH command, for example from my laptop I run:

nick@oldfaithful:~$ ssh [email protected] -X

Where 10.0.1.4 is the remote tester device.

After SSHing into the box, we can just run scrcpy and boom, there’s the window we can interact with.

If you’ve got multiple devices connected to the same device, you’ll need to specify the ADB device ID, and of course, you can have multiple sessions open at the same time.

scrcpy -s 61771fe5

That’s it, as simple as that.

Tweaking

A few settings you may need to set:

I like to enable the “Show taps” option so I can see where my mouse is on the touchscreen and see what I’ve done, it makes it a lot easier when recording from the screen as well for the person watching to follow along.

You’ll probably also want to disable the lock screen and keep the screen awake

Some OEMs have an additonal tick box if you want to be able to interact with the device (rather than just view the screen), which often requires signing into an account, if you see this toggle, you’ll need to turn it on:

Ansible Playbook

I’ve had to build a few of these, so I’ve put an Ansible Playbook on Github so you can create your own.

You can grab it from here.

SMS with Alphanumeric Source

Sending SMS with an alphanumeric String as the Source

If you’ve ever received an SMS from your operator, and the sender was the Operator name for example, you may be left wondering how it’s done.

In IMS you’d think this could be quite simple – You’d set the From header to be the name rather than the MSISDN, but for most SMSoIP deployments, the From header is ignored and instead the c header inside the SMS body is used.

So how do we get it to show text?

Well the TP-Originating address has the “Type of Number” (ToN) field which is typically set to International/National, but value 5 allows for the Digits to instead be alphanumeric characters.

GSM 7 bit encoding on the text in the TP-Originating Address digits and presto, you can send SMS to subscribers where the message shows as From an alphanumeric source.

On Android SMSs received from alphanumeric sources cannot be responded to (“no more “DO NOT REPLY TO THIS MESSAGE” at the end of each text), but on iOS devices you can respond, but if I send an SMS from “Nick” the reply from the subscriber using the iPhone will be sent to MSISDN 6425 (Nick on the telephone keypad).

Evolved Packet Core – Analysis Challenge

This post is one of a series of packet capture analysis challenges designed to test your ability to understand what is going on in a network from packet captures.
Download the Packet Capture and see how many of the questions you can answer from the attached packet capture.

The answers are at the bottom of this page, along with how we got to the answers.

This challenge focuses on the Evolved Packet Core, specifically the S1 and Diameter interfaces.

Why is the Subscriber failing to attach?

And what is the behavior we should be expecting to see?

What is the Cell ID of this eNodeB?

What is the Tracking Area?

That the subscriber is trying to attach in.

Does the device attaching to the network support VoLTE?

What type of IP is the subscriber requesting for this PDN session?

Is the device requesting an IPv4 address, IPv6 address or both?

What is the Diameter Application ID for S6a?

You should be able to ascertain this from information from the PCAP, without needing to refer to the standards.

What is the Crytpo RES returned by the HSS, and what is the RES returned by the SIM/UE?

Does this mean the subscriber was authenticated successfully?

Answers

Answer: Why is the Subscriber failing to attach?

The Diameter Update Location Request in frame 10 does not get answered by the HSS. After 5 seconds the MME gives up and rejects the connection.

Instead what should have happened is the HSS should have responded to the Update Location Request with an Update Location Answer, as we covered in the attach procedure.

Answer: What is the Cell ID of this eNodeB?

In Uplink messages from the eNodeB the EUTRAN-GCI field contains the Cell-ID of the eNodeB.

In this case the Cell-ID is 1.

Answer: What is the Tracking Area?

The tracking area is 123.

This information is available in the TAI field in the Uplink S1 messages.

Answer: Does the device attaching to the network support VoLTE?

No, the device does not support VoLTE.

There are a few ways we can get to this answer, and VoLTE support in the phone does not mean VoLTE will be enabled, but we can see the Voice Domain preference is set to CS Voice Only, meaning GSM/UMTS for voice calling.

This is common on cheaper handsets that do not support VoLTE.

Answer: What type of IP is the subscriber requesting for this PDN session? (IPv4/IPv6/Both)?

The subscriber is requesting an IPv4 address only.

We can see this in the ESM Message Container for the PDN Connectivity Request, the PDN type is “IPv4”.

Answer: What is the Diameter Application ID for S6a?

Answer: 16777251

This is shown for the Vendor-Specific-Application-Id AVP on an S6a message.

Answer: What is the Crytpo RES returned by the HSS, and what is the RES returned by the SIM/UE?

The RES (Response) and X-RES (Expected Response) Both are “dba298fe58effb09“, they do match, which means this subscriber was authenticated successfully.

You can learn more about what these values do in this post.

The Surprisingly Complicated World of SMS: Apple iPhone MT SMS

In iOS 15, Apple added support for iPhones to support SMS over IMS networks – SMSoIP. Previously iPhone users have been relying on CSFB / SMSoNAS (Using the SGs interface) to send SMS on 4G networks.

Getting this working recently led me to some issues that took me longer than I’d like to admit to work out the root cause of…

I was finding that when sending a Mobile Termianted SMS to an iPhone as a SIP MESSAGE, the iPhone would send back the 200 OK to confirm delivery, but it never showed up on the screen to the user.

The GSM A-I/F headers in an SMS PDU are used primarily for indicating the sender of an SMS (Some carriers are configured to get this from the SIP From header, but the SMS PDU is most common).

The RP-Destination Address is used to indicate the destination for the SMS, and on all the models of handset I’ve been testing with, this is set to the MSISDN of the Subscriber.

But some devices are really finicky about it’s contents. Case in point, Apple iPhones.

If you send a Mobile Terminated SMS to an iPhone, like the one below, the iPhone will accept and send back a 200 OK to this request.

The problem is it will never be displayed to the user… The message is marked as delivered, the phone has accepted it it just hasn’t shown it…

SMS reports as delivered by the iPhone (200 OK back) but never gets displayed to the user of the phone as the RP-Destination Address header is populated

The fix is simple enough, if you set the RP-Destination Address header to 0, the message will be displayed to the user, but still took me a shamefully long time to work out the problem.

RP-Destination Address set to 0 sent to the iPhone, this time it’ll get displayed to the user.
Huawei BBU 3900 Architecture

Huawei Baseband Cheat Sheet

Baseband Units (UBBP)

CardMax LTE Cells
UBBPd33×20 MHz 2T2R
UBBPd43×20 MHz 4T4R
UBBPd56×20 MHz 2T2R OR 3×20 MHz 4T4R
UBBPd66×20 MHz 4T4R
UBBPe13×20 MHz 2T2R
UBBPe23×20 MHz 4T4R
UBBPe36×20 MHz 2T2R OR 3×20 MHz 4T4R
UBBPe46×20 MHz 4T4R OR 3×20 MHz 8T8R
Max Cells in LTE FDD

Main Processing and Transmission (LMPT/UMPT)

In some instances two boards can be used together to double the max cells or max throughput values.

CardMax CellsMax Throughput
(at MAC Layer)
Max UEs
(In RRC Connected)
LMPT18 Cells (4T4R)Uplink 300Mbps
Downlink 450Mbps
5400
UMPTa36 Cells (4T4R)Aggregate 1.5Gbps10800
UMPTb136 Cells (4T4R)Aggregate 1.5Gbps10800
UMPTb236 Cells (4T4R)Aggregate 1.5Gbps10800
UMPTb336 Cells (4T4R)Aggregate 2Gbps10800
UMPTb936 Cells (4T4R)Aggregate 2Gbps10800
UMPTe72 Cells (4T4R)Aggregate 10Gbps14400

Lifecycle of a Dedicated Bearer – From Flow-Description AVP to Traffic Flow Templates

To support Dedicated Bearers we first have to have a way of profiling the traffic, to classify the traffic as being the type we want to provide the Dedicated Bearer for.

The first step involves a request from an Application Function (AF) to the PCRF via the Rx interface.

The most common type of AF would be a P-CSCF. When a VoLTE call gets setup the P-CSCF requests that a dedicated bearer be setup for the IP Address and Ports involved in the VoLTE call, to ensure users get the best possible call quality.

But Application Functions aren’t limited to just VoLTE – You could also embed an Application Function into the server for an online game to enable a dedicated bearer for users playing that game, or a sports streaming app that detects when a user starts streaming sports and creates a dedicated bearer for that user to send the traffic down.

The request to setup a dedicated bearer comes in the form of a Diameter request message from the AF, using the Rx reference point, typically from the P-CSCF to the PCRF in the network in an “AA-Request”.

Of main interest in the AA-Request is the Media Component AVP, that contains all the details needed to identify the traffic flow.

Now our PCRF is in charge of policy, and know which P-GW is serving the required subscriber. So the PCRF takes this information and sends a Gx Re-Auth Request to the PCEF in the P-GW serving the subscriber, with a Charging Rule the PCEF in the P-GW needs to install, to profile and apply QoS to the bearer.

So within the Gx Re-Auth Request is the Charging-Rule Definition, made up of Flow-Description AVP which I’ve written about here, that is used to identify and profile traffic flows and QoS parameters to apply to matching traffic.

Charging Rule Definition’s Flow-Information AVPs showing the information needed to profile the traffic

The QoS Description AVP defines which QoS parameters (QCI / ARP / Guaranteed & Maximum Bandwidth) should be applied to the traffic that matches the rules we just defined.

QoS information AVP
QoS Information AVP showing requested QoS Parameters

The P-GW sends back a Gx Re-Auth Answer, and gets to work actually setting up these bearers.

With the rule installed on the PCEF, it’s time to get this new bearer set up on the UE / eNodeB.

The P-GW sends a GTPv2 “Create Bearer Request” to the S-GW which forwards it onto the MME, to setup / define the Dedicated Bearer to be setup on the eNodeB.

GTPv2 “Create Bearer Request” sent by the P-Gw to the S-GW forwarded from the S-GW to the MME

The MME translates this into an S1 “E-RAB Setup Request” which it sends to the eNodeB to setup,

S1 E-RAB Setup request showing the E-RAB to be setup

Assuming the eNodeB has the resources to setup this bearer, it provides the details to the UE and sets up the bearer, sending confirmation back to the MME in the S1 “E-RAB Setup Response” message, which the MME translates back into GTPv2 for a “Create Bearer Response”

All this effort to keep your VoLTE calls sounding great!

Backing up and Restoring Open5GS

You may find you need to move your Open5GS deployments from one server to another, or split them between servers.
This post covers the basics of migrating Open5GS config and data between servers by backing up and restoring it elsewhere.

The Database

Open5GS uses MongoDB as the database for the HSS and PCRF. This database contains all our SDM data, like our SIM Keys, Subscriber profiles, PCC Rules, etc.

Backup Database

To backup the MongoDB database run the below command (It doesn’t need sudo / root to run):

mongodump -o Open5Gs_"`date +"%d-%m-%Y"`"

You should get a directory called Open5Gs_todaysdate, the files in that directory are the output of the MongoDB database.

Restore Database

If you copy the backup we just took (the directory named Open5Gs_todaysdate) to the new server, you can restore the complete database by running:

mongorestore Open5Gs_todaysdate

This restores everything in the database, including profiles and user accounts for the WebUI,

You may instead just restore the Subscribers table, leaving the Profiles and Accounts unchanged with:

mongorestore Open5Gs_todaysdate/open5gs/subscribers.bson -c subscribers -d open5gs

The database schema used by Open5GS changed earlier this year, meaning you cannot migrate directly from an old database to a new one without first making a few changes.

To see if your database is affected run:

mongo open5gs --eval 'db.subscribers.find({"__v" : 0}).toArray()' | grep "imsi" | wc -l

Which will let you know how many subscribers are using the old database type. If it’s anything other than 0 running this Python script will update the database as required.

Once you have installed Open5GS onto the new server you’ll need to backup the data from the old one, and restore it onto the new one.

The Config Files

The text based config files define how Open5Gs will behave, everything from IP Addresses to bind on, to the interfaces and PLMN.

Again, you’ll need to copy them from the old server to the new, and update any IP Addresses that may change between the two.

On the old server run:

cp -r /etc/open5gs /tmp/

Then copy the “open5gs” folder to the new server into the /etc/ directory.

If you’re also changing the IP Address you’re binding on, you’ll need to update that in the YAML files.

Bringing Everything Online

Finally you’ll need to restart all the services,

sudo systemctl start open5gs-*

Run a basic health check to ensure the services are running,

ps aux | grep open5gs-

Should list all the running Open5Gs services,

And then check the logs to ensure everything is working as expected,

tail -f /var/log/open5gs/*.log
Credit Control Request / Answer call flow in IMS Charging

Basics of EPC/LTE Online Charging (OCS)

Early on as subscriber trunk dialing and automated time-based charging was introduced to phone networks, engineers were faced with a problem from Payphones.

Previously a call had been a fixed price, once the caller put in their coins, if they put in enough coins, they could dial and stay on the line as long as they wanted.

But as the length of calls began to be metered, it means if I put $3 of coins into the payphone, and make a call to a destination that costs $1 per minute, then I should only be allowed to have a 3 minute long phone call, and the call should be cutoff before the 4th minute, as I would have used all my available credit.

Conversely if I put $3 into the Payphone and only call a $1 per minute destination for 2 minutes, I should get $1 refunded at the end of my call.

We see the exact same problem with prepaid subscribers on IMS Networks, and it’s solved in much the same way.

In LTE/EPC Networks, Diameter is used for all our credit control, with all online charging based on the Ro interface. So let’s take a look at how this works and what goes on.

Generic 3GPP Online Charging Architecture

3GPP defines a generic 3GPP Online charging architecture, that’s used by IMS for Credit Control of prepaid subscribers, but also for prepaid metering of data usage, other volume based flows, as well as event-based charging like SMS and MMS.

Network functions that handle chargeable services (like the data transferred through a P-GW or calls through a S-CSCF) contain a Charging Trigger Function (CTF) (While reading the specifications, you may be left thinking that the Charging Trigger Function is a separate entity, but more often than not, the CTF is built into the network element as an interface).

The CTF is a Diameter application that generates requests to the Online Charging Function (OCF) to be granted resources for the session / call / data flow, the subscriber wants to use, prior to granting them the service.

So network elements that need to charge for services in realtime contain a Charging Trigger Function (CTF) which in turn talks to an Online Charging Function (OCF) which typically is part of an Online Charging System (AKA OCS).

For example when a subscriber turns on their phone and a GTP session is setup on the P-GW/PCEF, but before data is allowed to flow through it, a Diameter “Credit Control Request” is generated by the Charging Trigger Function (CTF) in the P-GW/PCEF, which is sent to our Online Charging Server (OCS).

The “Credit Control Answer” back from the OCS indicates the subscriber has the balance needed to use data services, and specifies how much data up and down the subscriber has been granted to use.

The P-GW/PCEF grants service to the subscriber for the specified amount of units, and the subscriber can start using data.

This is a simplified example – Decentralized vs Centralized Rating and Unit Determination enter into this, session reservation, etc.

The interface between our Charging Trigger Functions (CTF) and the Online Charging Functions (OCF), is the Ro interface, which is a Diameter based interface, and is common not just for online charging for data usage, IMS Credit Control, MMS, value added services, etc.

3GPP define a reference online-charging interface, the Ro interface, and all the application-specific interfaces, like the Gy for billing data usage, build on top of the Ro interface spec.

Basic Credit Control Request / Credit Control Answer Process

This example will look at a VoLTE call over IMS.

When a subscriber sends an INVITE, the Charging Trigger Function baked in our S-CSCF sends a Diameter “Credit Control Request” (CCR) to our Online Charging Function, with the type INITIAL, meaning this is the first CCR for this session.

The CCR contains the Service Information AVP. It’s this little AVP that is where the majority of the magic happens, as it defines what the service the subscriber is requesting. The main difference between the multitude of online charging interfaces in EPC networks, is just what the service the customer is requesting, and the specifics of that service.

For this example it’s a voice call, so this Service Information AVP contains a “IMS-Information” AVP. This AVP defines all the parameters for a IMS phone call to be online charged, for a voice call, this is the called-party, calling party, SDP (for differentiating between voice / video, etc.).

It’s the contents of this Service Information AVP the OCS uses to make decision on if service should be granted or not, and how many service units to be granted. (If Centralized Rating and Unit Determination is used, we’ll cover that in another post)
The actual logic, relating to this decision is typically based on the the rating and tariffing, credit control profiles, etc, and is outside the scope of the interface, but in short, the OCS will make a yes/no decision about if the subscriber should be granted access to the particular service, and if yes, then how many minutes / Bytes / Events should be granted.

In the received Credit Control Answer is received back from our OCS, and the Granted-Service-Unit AVP is analysed by the S-CSCF.
For a voice call, the service units will be time. This tells the S-CSCF how long the call can go on before the S-CSCF will need to send another Credit Control Request, for the purposes of this example we’ll imagine the returned value is 600 seconds / 10 minutes.

The S-CSCF will then grant service, the subscriber can start their voice call, and start the countdown of the time granted by the OCS.

As our chatty subscriber stays on their call, the S-CSCF approaches the limit of the Granted Service units from the OCS (Say 500 seconds used of the 600 seconds granted).
Before this limit is reached the S-CSCF’s CTF function sends another Credit Control Request with the type UPDATE_REQUEST. This allows the OCS to analyse the remaining balance of the subscriber and policies to tell the S-CSCF how long the call can continue to proceed for in the form of granted service units returned in the Credit Control Answer, which for our example can be 300 seconds.

Eventually, and before the second lot of granted units runs out, our subscriber ends the call, for a total talk time of 700 seconds.

But wait, the subscriber been granted 600 seconds for our INITIAL request, and a further 300 seconds in our UPDATE_REQUEST, for a total of 900 seconds, but the subscriber only used 700 seconds?

The S-CSCF sends a final Credit Control Request, this time with type TERMINATION_REQUEST and lets the OCS know via the Used-Service-Unit AVP, how many units the subscriber actually used (700 seconds), meaning the OCS will refund the balance for the gap of 200 seconds the subscriber didn’t use.

If this were the interface for online charging of data, we’d have the PS-Information AVP, or for online charging of SMS we’d have the SMS-Information, and so on.

The architecture and framework for how the charging works doesn’t change between a voice call, data traffic or messaging, just the particulars for the type of service we need to bill, as defined in the Service Information AVP, and the OCS making a decision on that based on if the subscriber should be granted service, and if yes, how many units of whatever type.

Diameter – Insert Subscriber Data Request / Response

While we’ve covered the Update Location Request / Response, where an MME is able to request subscriber data from the HSS, what about updating a subscriber’s profile when they’re already attached? If we’re just relying on the Update Location Request / Response dialog, the update to the subscriber’s profile would only happen when they re-attach.

We need a mechanism where the HSS can send the Request and the MME can send the response.

This is what the Insert Subscriber Data Request/Response is used for.

Let's imagine we want to allow a subscriber to access an additional APN, or change an AMBR values of an existing APN;

We'd send an Insert Subscriber Data Request from the HSS, to the MME, with the Subscription Data AVP populated with the additional APN the subscriber can now access.

Beyond just updating the Subscription Data, the Insert Subscriber Data Request/Response has a few other funky uses.

Through it the HSS can request the EPS Location information of a Subscriber, down to the TAC / eNB ID serving that subscriber. It’s not the same thing as the GMLC interfaces used for locating subscribers, but will wake Idle UEs to get their current serving eNB, if the Current Location Request is set in the IDR Flags.

But the most common use for the Insert-Subscriber-Data request is to modify the Subscription Profile, contained in the Subscription-Data AVP,

If the All-APN-Configurations-Included-Indicator is set in the AVP info, then all the existing AVPs will be replaced, if it’s not then everything specified is just updated.

The Insert Subscriber Data Request/Response is a bit novel compared to other S6a requests, in this case it’s initiated by the HSS to the MME (Like the Cancel Location Request), and used to update an existing value.

PS Data Off

Imagine a not-too distant future, one without flying cars – just one where 2G and 3G networks have been switched off.

And the imagine a teenage phone user, who has almost run out of their prepaid mobile data allocation, and so has switched mobile data off, or a roaming scenario where the user doesn’t want to get stung by an unexpectedly large bill.

In 2G/3G networks the Circuit Switched (Voice & SMS) traffic was separate to the Packet Switched (Mobile Data).

This allowed users to turn of mobile data (GPRS/HSDPA), etc, but still be able to receive phone calls and send SMS, etc.

With LTE, everything is packet switched, so turning off Mobile Data would cut off VoLTE connectivity, meaning users wouldn’t be able to make/recieve calls or SMS.

In 3GPP Release 14 (2017) 3GPP introduced the PS Data Off feature.

This feature is primarily implemented on the UE side, and simply blocks uplink user traffic from the UE, while leaving other background IP services, such as IMS/VoLTE and MMS, to continue working, even if mobile data is switched off.

The UE can signal to the core it is turning off PS Data, but it’s not required to, so as such from a core perspective you may not know if your subscriber has PS Data off or not – The default APN is still active and in the implementations I’ve tried, it still responds to ICMP Pings.

IMS Registration stays in place, SMS and MMS still work, just the UE just drops the requests from the applications on the device (In this case I’m testing with an Android device).

What’s interesting about this is that a user may still find themselves consuming data, even if data services are turned off. A good example of this would be push notifications, which are sent to the phone (Downlink data). The push notification will make it to the UE (or at least the TCP SYN), after all downlink services are not blocked, however the response (for example the SYN-ACK for TCP) will not be sent. Most TCP stacks when ignored, try again, so you’ll find that even if you have PS Data off, you may still use some of your downlink data allowance, although not much.

The SIM EF 3GPPPSDATAOFF defines the services allowed to continue flowing when PS Data is off, and the 3GPPPSDATAOFFservicelist EF lists which IMS services are allowed when PS Data is off.

Usually at this point, I’d include a packet capture and break down the flow of how this all looks in signaling, but when I run this in my lab, I can’t differentiate between a PS Data Off on the UE and just a regular bearer idle timeout… So have an irritating blinking screenshot instead…

The PLMN Problem for Private LTE / 5G

So it’s the not to distant future and the pundits vision of private LTE and 5G Networks was proved correct, and private networks are plentiful.

But what PLMN do they use?

The PLMN (Public Land Mobile Network) ID is made up of a Mobile Country Code + Mobile Network Code. MCCs are 3 digits and MNCs are 2-3 digits. It’s how your phone knows to connect to a tower belonging to your carrier, and not one of their competitors.

For example in Australia (Mobile Country Code 505) the three operators each have their own MCC. Telstra as the first licenced Mobile Network were assigned 505/01, Optus got 505/02 and VHA / TPG got 505/03.

Each carrier was assigned a PLMN when they started operating their network. But the problem is, there’s not much space in this range.

The PLMN can be thought of as the SSID in WiFi terms, but with a restriction as to the size of the pool available for PLMNs, we’re facing an IPv4 exhaustion problem from the start if we’re facing an explosion of growth in the space.

Let’s look at some ways this could be approached.

Everyone gets a PLMN

If every private network were to be assigned a PLMN, we’d very quickly run out of space in the range. Best case you’ve got 3 digits, so only space for 1,000 networks.

In certain countries this might work, but in other areas these PLMNs may get gobbled up fast, and when they do, there’s no more. New operators will be locked out of the market.

Loaner PLMNs

Carriers already have their own PLMNs, they’ve been using for years, some kit vendors have been assigned their own as well.

If you’re buying a private network from an existing carrier, they may permit you to use their PLMN,

Or if you’re buying kit from an existing vendor you may be able to use their PLMN too.

But what happens then if you want to move to a different kit vendor or another service provider? Do you have to rebuild your towers, reconfigure your SIMs?

Are you contractually allowed to continue using the PLMN of a third party like a hardware vendor, even if you’re no longer purchasing hardware from them? What happens if they change their mind and no longer want others to use their PLMN?

Everyone uses 999 / 99

The ITU have tried to preempt this problem by reallocating 999/99 for use in Private Networks.

The problem here is if you’ve got multiple private networks in close proximity, especially if you’re using CBRS or in close proximity to other networks, you may find your devices attempting to attach to another network with the same PLMN but that isn’t part of your network,

Mobile Country or Geographical Area Codes
Note from TSB
Following the agreement on the Appendix to Recommendation ITU-T E.212 on “shared E.212 MCC 999 for internal use within a private network” at the closing plenary of ITU-T SG2 meeting of 4 to 13 July 2018, upon the advice of ITU-T Study Group 2, the Director of TSB has assigned the Mobile Country Code (MCC) “999” for internal use within a private network. 

Mobile Network Codes (MNCs) under this MCC are not subject to assignment and therefore may not be globally unique. No interaction with ITU is required for using a MNC value under this MCC for internal use within a private network. Any MNC value under this MCC used in a network has
significance only within that network. 

The MNCs under this MCC are not routable between networks. The MNCs under this MCC shall not be used for roaming. For purposes of testing and examples using this MCC, it is encouraged to use MNC value 99 or 999. MNCs under this MCC cannot be used outside of the network for which they apply. MNCs under this MCC may be 2- or 3-digit.

(Recommendation ITU-T E.212 (09/2016))

The Crystal Ball?

My bet is we’ll see the ITU allocate an MCC – or a range of MCCs – for private networks, allowing for a pool of PLMNs to use.

When deploying networks, Private network operators can try and pick something that’s not in use at the area from a pool of a few thousand options.

The major problem here is that there still won’t be an easy way to identify the operator of a particular network; the SPN is local only to the SIM and the Network Name is only present in the NAS messaging on an attach, and only after authentication.

If you’ve got a problem network, there’s no easy way to identify who’s operating it.

But as eSIMs become more prevalent and BIP / RFM on SIMs will hopefully allow operators to shift PLMNs without too much headache.

How UEs get Time in LTE

You may have noticed in the settings on your phone the time source can be set to “Network”, but what does this actually entail and how is this information transferred?

The answer is actually quite simple,

In the NAS PDU of the Downlink NAS Transport message from the MME to the UE, is the Time Zone & Time field, which contains (unsuprisingly) the Timezone and Time.

Time is provided in UTC form with the current Timezone to show the offset.

This means that in the configuration for each TAC on your MME, you have to make sure that the eNBs in that TAC have the Timezone set for the location of the cells in that TAC, which is especially important when working across timezones.

There is no parameter for the date/time when Daylight savings time may change. But as soon as a UE goes Idle and then comes out of Idle mode, it’ll be given the updated timezone information, and during handovers the network time is also provided.
This means if you were using your phone at the moment when DST begins / ends you’d only see the updated time once the UE toggles into/out of Idle mode, or when performing a tracking-area update.