Categories
EPC IMS / VoLTE LTE Mobile Networks RFCs & Standards SDM

Diameter Routing Agents (Why you need them, and how to build them) – Part 2 – Routing

Diving back into the world of Diameter Routing Agents with a look at the logic that defines how a DRA routes traffic from one place to another.

What I typically refer to as Diameter interfaces / reference points, such as S6a, Sh, Sx, Sy, Gx, Gy, Zh, etc, etc, are also known as Applications.

Diameter Application Support

If you look inside the Capabilities Exchange Request / Answer dialog, what you’ll see is each side advertising the Applications (interfaces) that they support, each one being identified by an Application ID.

CER showing support for the 3GPP Zh Application-ID (Interface)

If two peers share a common Application-Id, then they can communicate using that Application / Interface.

For example, the above screenshot shows a peer with support for the Zh Interface (Spoiler alert, XCAP Gateway / BSF coming soon!). If two Diameter peers both have support for the Zh interface, then they can use that to send requests / responses to each other.

This is the basis of Diameter Routing.

Diameter Routing Tables

Like any router, our DRA needs to have logic to select which peer to route each message to.

For each Diameter connection to our DRA, it will build up a Diameter Routing table, with information on each peer, including the realm and applications it advertises support for.

Then, based on the logic defined in the DRA to select which Diameter peer to route each request to.

In its simplest form, Diameter routing is based on a few things:

  1. Look at the DestinationRealm, and see if we have any peers at that realm
  2. If we do then look at the DestinationHost, if that’s set, and the host is connected, and if it supports the specified Application-Id, then route it to that host
  3. If no DestinationHost is specified, look at the peers we have available and find the one that supports the specified Application-Id, then route it to that host
Simplified Diameter Routing Table used by DRAs

With this in mind, we can go back to looking at how our DRA may route a request from a connected MME towards an HSS.

Let’s look at some examples of this at play.

The request from MME02 is for DestinationRealm mnc001.mcc001.3gppnetwork.org, which our DRA knows it has 4 connected peers in (3 if we exclude the source of the request, as we don’t want to route it back to itself of course).

So we have 3 contenders still for who could get the request, but wait! We have a DestinationHost specified, so the DRA confirms the host is available, and that it supports the requested ApplicationId and routes it to HSS02.

So just because we are going through a DRA does not mean we can’t specific which destination host we need, just like we would if we had a direct link between each Diameter peer.

Conversely, if we sent another S6a request from MME01 but with no DestinationHost set, let’s see how that would look.

Again, the request is from MME02 is for DestinationRealm mnc001.mcc001.3gppnetwork.org, which our DRA knows it has 3 other peers it could route this to. But only two of those peers support the S6a Application, so the request would be split between the two peers evenly.

Clever Routing with DRAs

So with our DRA in place we can simplify the network, we don’t need to build peer links between every Diameter device to every other, but let’s look at some other ways DRAs can help us.

Load Control

We may want to always send requests to HSS01 and only use HSS02 if HSS01 is not available, we can do this with a DRA.

Or we may want to split load 75% on one HSS and 25% on the other.

Both are great use cases for a DRA.

Routing based on Username

We may want to route requests in the DRA based on other factors, such as the IMSI.

Our IMSIs may start with 001010001xxx, but if we introduced an MVNO with IMSIs starting with 001010002xxx, we’d need to know to route all traffic where the IMSI belongs to the home network to the home network HSS, and all the MVNO IMSI traffic to the MVNO’s HSS, and DRAs handle this.

Inter-Realm Routing

One of the main use cases you’ll see for DRAs is in Roaming scenarios.

For example, if we have a roaming agreement with a subscriber who’s IMSIs start with 90170, we can route all the traffic for their subs towards their HSS.

But wait, their Realm will be mnc901.mcc070.3gppnetwork.org, so in that scenario we’ll need to add a rule to route the request to a different realm.

DRAs handle this also.

In our next post we’ll start actually setting up a DRA with a default route table, and then look at some more advanced options for Diameter routing like we’ve just discussed.

One slight caveat, is that mutual support does not always mean what you may expect.
For example an MME and an HSS both support S6a, which is identified by Auth-Application-Id 16777251 (Vendor ID 10415), but one is a client and one is a server.
Keep this in mind!

Leave a Reply

Your email address will not be published.