Category Archives: VoIP

Automated SIP testing with sipcmd

I wrote about some tests I ran with SIPp to load test the transcoding abilities of RTPengine a while back.

While SIPp allows you to create complex & powerful scenarios, sipcmd’s simple usage makes it great for quickly testing stuff.

Installation

Install prerequisites

apt-get install libopal-dev sip-dev libpt-dev libssl1.0-dev

Next up clone the GitHub repo and compile:

git clone https://github.com/tmakkonen/sipcmd
cd sipcmd
make 

To be able to call sipcmd from anywhere, copy the binary to /usr/sbin/

cp sipcmd /usr/sbin/

Usage

Unlike SIPp, sipcmd has a much more simple syntax to allow you to follow basic call scenarios, like call a destination, wait a set time and then hangup, or answer an incoming call and send a DTMF digit and wait for the called party to hangup.

So let’s get the most basic thing we can set, SIP Registration and Authentication.

sipcmd -P sip -u "nick" -c "mypassword" -w "192.168.190.129"

Now sipcmd will register on that host (192.168.190.129) with username nick and password mypassword.

And it works!

Next we’ll add a basic call scenario, call 123 wait 2 seconds (2000 ms) and then hangup.

“c123;w2000;h”

./sipcmd -P sip -u "nick" -c "mypassword" -w "192.168.190.129" -x "c123;w2000;h"

And there you have it, simple as that, we’ve made a test call, waited a set time and then hung up.

We can even combine this with monitoring / NMS systems like Nagios to run tests against the network continually.

For more advanced scenarios I’d recommend using SIPp, but for simple testing, particularly from a command line, sipcmd is a simple easy place to start.

SIP SIMPLE – Instant Messaging with SIP

People think SIP they think VoIP & phone calls, but SIP it’s the Phone Call Initiation Protocol it’s the Session Initiation Protocol – Sure VoIP guys like me love SIP, but it’s not just about VoIP.

Have you sent an SMS on a modern mobile phone recently? Chances are you sent a SMS over SIP using SIP MESSAGE method.

So let’s look a bit at SIP SIMPLE, the catchily titled acronym translates to Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (Admittedly less catchy in it’s full form).

There’s two way SIP SIMPLE can be used to implement Instant Messaging, Paging Mode with each message sent as a single transaction, and Session Mode where a session is setup between users and IMs exchanged with the same Call ID / transaction.

I’m going to cover the Paging Mode implementation because it’s simpler easier to understand.

Before we get too far this is another example of confusing terminology, let’s just clear this up; According to the RFC any SIP request is a SIP Message, like a SIP OPTIONS message, a SIP INVITE message. But the method of a SIP INVITE message is INVITE, the method of a SIP OPTIONS message is OPTIONS. There’s a SIP MESSAGE method, meaning you can send a SIP MESSAGE message using the MESSAGE method. Clear as mud? I’ll always refer to the SIP Method in Capitals, like MESSAGE, INVITE, UPDATE, etc.

The SIP MESSAGE Method

The basis of using SIP for instant messaging relies on the MESSAGE method, laid out in RFC 3428.

The SIP MESSAGE method looks / acts very similar to a SIP INVITE, in that it’s got all the standard SIP headers, but also a Message Body, in which our message body lives (funny about that), typically we’ll send messages using the Content-Type: text/plain to denote we’re sending a plaintext message.

Example MESSAGE Message Flow

Like a SIP OPTIONS Method, the MESSAGE method is simply answered with a 200 OK (No Ack).

Let’s have a look at how the MESSAGE message looks:

MESSAGE sip:[email protected] SIP/2.0
Via: SIP/2.0/TCP user1pc.domain.com;branch=z9hG4bK776sgdkse
Max-Forwards: 70
From: sip:[email protected];tag=49583
To: sip:[email protected]
Call-ID: [email protected]
CSeq: 1 MESSAGE
Content-Type: text/plain
Content-Length: 18

Hello world.

After receiving the SIP MESSAGE message, the recipient simply sends back a 200 OK with the same Call-ID.

Simple as that.

You can read more about the SIP MESSAGE method in RFC 3428.

I used the SIP MESSAGE method in a Kamailio Bytes example recently where I sent a MESSAGE to an IP phone when a HTTP GET was run against Kamailio, and again to send an alert when an emergency services destination was called.

PyHSS Update – IMS Cx Support!

As I’ve been doing more and more work with IMS / VoLTE, the requirements / features on PyHSS has grown.

Some key features I’ve added recently:

IMS HSS Features

IMS Cx Server Assignment Request / Answer

IMS Cx Multimedia Authentication Request / Answer

IMS Cx User Authentication Request / Answer

IMS Cx Location Information Request / Answer

General HSS Features

Better logging (IPs instead of Diameter hostnames)

Better Resync Support (For USIMs with different sync windows)

ToDo

There’s still some functions in the 3GPP Cx interface description I need to implement:

IMS Cx Registration-Termination Request / Answer

IMS Cx Push-Profile-Request / Answer

Support for Resync in IMS Cx Multimedia Authentication Answer

Keep an eye on the GitLab repo where I’m pushing the changes.

If you’re leaning about VoLTE & IMS networks, or building your own, I’d suggest checking out my other posts on the topic.

Kamailio Bytes – Python + SIP with KEMI

In my last post I talked about using KEMI in Kamailio and how you can integrate in a different programming language to handle your SIP request handling in a language you already know – Like Python!

So in this post I’ll cover the basics of how we can manage requests and responses from Kamailio in Python, if you haven’t already read it, go back to last weeks post and get that running, it’s where we’ll start off.

The Framework

Before we get too excited there’s some boilerplate we’ve got to add to our Python script, we need to create a class called kamailio and populate the class by defining some functions, we’ll define an __init__ to handle loading of the class, define a child_init for handling child processes, define ksr_request_route to handle the initial requests. We’ll also need to define a mod_init – outside of the Kamailio class to initialize the class.

import sys
import Router.Logger as Logger
import KSR as KSR

import requests

# global function to instantiate a kamailio class object
# -- executed when kamailio app_python module is initialized
def mod_init():
    KSR.info("===== from Python mod init\n");
    return kamailio();


# -- {start defining kamailio class}
class kamailio:
    def __init__(self):
        KSR.info('===== kamailio.__init__\n');


    # executed when kamailio child processes are initialized
    def child_init(self, rank):
        KSR.info('===== kamailio.child_init(%d)\n' % rank);
        return 0;


    # SIP request routing
    # -- equivalent of request_route{}
    def ksr_request_route(self, msg):
        KSR.info("===== request - from kamailio python script\n");
        KSR.dbg("method " + KSR.pv.get("$rm") + " r-uri " + KSR.pv.get("$ru"))

Most of these should be pretty self explanatory for anyone who’s done a bit more in-depth Python programming, but it’s no big deal if you don’t understand all this, the only part you need to understand is the ksr_request_route function.

ksr_request_route: translates to our request_route{} in the Kamailio native scripting language, all requests that come in will start off in this part.

Python Kamailio Routing

So let’s start to build upon this, so we’ll blindly accept all SIP registrations;

...
    # SIP request routing
    # -- equivalent of request_route{}
    def ksr_request_route(self, msg):
        KSR.info("===== request - from kamailio python script\n");
        KSR.dbg("method " + KSR.pv.get("$rm") + " r-uri " + KSR.pv.get("$ru"))


        if KSR.is_method("REGISTER"):
                KSR.sl.send_reply(200, "Sure")

Here you’ll see we’ve added an if statement, as if we were doing any other If statement in Python, in this case we’re asking if the KSR.is_method(“REGISTER”), and if it is, we’ll send back a 200 OK response.

Let’s pause and talk about KSR

All the Kamailio bits we’ll use in Python will have the KSR. prefix, so let’s take a quick break here to talk about KSR. The KSR. functions are the KEMI functions we’ve exposed to Python.

Without them, we’re just writing Python, and we’d have to do all the functions provided by Kamailio nativeley in Python, which would be crazy.

So we leverage the Kamailio modules you know and love from Python using Python’s logic / programming syntax, as well as opening up the ability to pull in other libraries from Python.

There’s a full (ish) list of the KEMI functions here, but let’s talk about the basics.

Let’s look at how we might send a stateless reply,

There’s a module function to send a stateless reply;

 KSR.sl.send_reply(200, "OK")

The vast majority of functions are abstracted as module functions, like the example above, but not all of them.

So every function doesn’t need to be wrapped up as a module, there’s also a way to call any function that you’d call from the native scripting language, wrapped up, kind of like an Exec command:

KSR.x.modf("sl_send_reply", "200", "OK");

So thanks to this we can call any Kamailio function from Python, even if it’s not explicitly in the KEMI abstraction.

Python Kamailio Routing (Continued)

So earlier we managed REGISTER requests and sent back a 200 OK response.

What about forwarding a SIP Request to another proxy? Let’s follow on with an elif statement to test if the method is an INVITE and statelessly forward it.

        elif KSR.is_method("INVITE"):
                #Lookup our public IP address
                try:
                    ip = requests.get('https://api.ipify.org').text
                except:
                    ip = "Failed to resolve"

                #Add that as a header
                KSR.hdr.append("X-KEMI: I came from KEMI at " + str(ip) + "\r\n");

                #Set host IP to 10.1.1.1
                KSR.sethost("10.1.1.1");

                #Forward the request on
                KSR.forward()

Now an incoming SIP invite will be proxied / forwarded to 10.1.1.1, all from Python.

But so far we’ve only done things in KEMI / Python that we could do in our native Kamailio scripting language, so let’s use some Python in our Python!

I utterly love the Python Requests library, so let’s use that to look up our public IP address and add it as a header to our forwarded SIP INVITE;

        elif KSR.is_method("INVITE"):
                #Lookup our public IP address
                try:
                    ip = requests.get('https://api.ipify.org').text
                except:
                    ip = "Failed to resolve"

                #Add that as a header
                KSR.hdr.append("X-KEMI: I came from KEMI at " + str(ip) + "\r\n");

                #Set host IP to 10.1.1.1
                KSR.sethost("10.1.1.1");

                #Forward the request on
                KSR.forward()

(For anyone pedantic out there, Kamailio does have an HTTP client module that could do this too, but Requests is awesome)

So let’s have a look at our forwarded request:

Bottom header is the X-KEMI custom header we included with our public IP

So let’s wrap this up a bit and handle any other request that’s not an INVITE or a REGISTER, with a 500 error code.

    # SIP request routing
    # -- equivalent of request_route{}
    def ksr_request_route(self, msg):

        KSR.dbg("method " + KSR.pv.get("$rm") + " r-uri " + KSR.pv.get("$ru"))


        if KSR.is_method("REGISTER"):
            KSR.sl.send_reply(200, "OK")

        elif KSR.is_method("INVITE"):
                #Lookup our public IP address
                try:
                    ip = requests.get('https://api.ipify.org').text
                except:
                    ip = "Failed to resolve"

                #Add that as a header
                KSR.hdr.append("X-KEMI: I came from KEMI at " + str(ip) + "\r\n");

                #Set host IP to 10.1.1.1
                KSR.sethost("10.1.1.1");

                #Forward the request on
                KSR.forward()
        else:
               KSR.sl.send_reply(500, "Got no idea...")

I’ve put my full code on GitHub which you can find here.

Kamailio Bytes – UAC for Remote User Registration to external SIP Server (Originating SIP REGISTER)

I’ve talked about using the UAC module, but as promised, here’s how we can use the UAC module to send SIP REGISTER requests to another SIP server so we can register to another SIP proxy.

Let’s say we’re using Kamailio to talk to a SIP Trunk that requires us to register with them so they know where to send the calls. We’d need to use Kamailio UAC module to manage SIP Registration with our remote SIP Trunk.

But Kamailio’s a proxy, why are we sending requests from it? A proxy just handles messages, right?
Proxies don’t originate messages, it’s true, and Kamailio can be a proxy, but with the UAC module we can use Kamailio as a Client instead of a server. Keep in mind Kamailio is what we tell it to be.

Getting Started

Before we can go spewing registrations out all over the internet we need to start by getting a few things in place;

First of which is configuring UAC module, which is something I covered off in my last post,

We’ll also need to have a database connection in place, again I’ve covered off connecting to a MySQL database in Kamailio here.

Once we’ve got that done we’ll need to tell the UAC module our IP Address for the from address for our Contact field, and the database URL of what we’ve setup.

modparam("uac", "reg_contact_addr", "192.168.1.99:5060")
modparam("uac", "reg_db_url", "mysql://kamailio:kamailiorw@localhost/kamailio")

I haven’t used a variable like DBURL for the database information, but you could.

Finally a restart will see these changes pushed into Kamailio.

/etc/init.d/kamailio restart

This is the end of the Kamailio config side of things, which you can find on my GitHub here.

Defining the Registration parameters

Once we’ve got a database connection in place and UAC module loaded, then we can configure an entry in the uacreg table in the database, in my example I’m going to be registering to an Asterisk box on 192.168.1.205, so I’ll insert that into my database:

mysql> INSERT INTO `uacreg` VALUES (NULL,'myusername','myusername','192.168.1.205','myusername','192.168.1.205','asterisk','myusername','mypassword','','sip:192.168.1.205:5060',60,0,0);

Note: If you’re using a later version of Kamailio (5.4+) then the DB schema changes and you may want something like this:

insert into uacreg values ('', 'myusername', 'myusername', 'mydomain', 'myusername', 'mydomain', 'asteriskrealm', 'myusername', 'mypassword', '', 'sip:remoteproxy.com:5060', 60, 0, 0, 0)

Having a look at the fields in our table makes it a bit clearer as to what we’ve got in place, setting flags to 0 will see Kamailio attempt registration. Make sure the auth_proxy is a SIP URI (Starts with sip:) and leave the auth_ha1 password empty as we haven’t calculated it.

mysql> SELECT * FROM 'uacreg' \G
            id: 2
        l_uuid: myusername
    l_username: myusername
      l_domain: 192.168.1.205
    r_username: myusername
      r_domain: 192.168.1.205
         realm: asterisk
 auth_username: myusername
 auth_password: mypassword
      auth_ha1:
    auth_proxy: sip:192.168.1.205:5060
       expires: 60
         flags: 0
     reg_delay: 0

Putting it into Play

After we’ve got our database connection in place, UAC module configured and database entries added, it’s time to put it into play, we’ll use Kamcmd to check it’s status:

kamcmd> uac.reg_reload
kamcmd> uac.reg_dump

Unfortunately from Kamcmd we’re not able to see registration status, but Sngrep will show us what’s going on:

From Sngrep we can see the REGISTRATION going out, the authentication challenge and the 200 OK at the end.

Make sure you’ve got your Realm correct, otherwise you may see an error like this:

RROR: {2 10 REGISTER [email protected]} uac [uac_reg.c:946]: uac_reg_tm_callback(): realms do not match. requested realm: [localhost]

If you’re not familiar with the SIP Registration process now’s a good time to brush up on it by having a read of my post here. – “What is a SIP Registrar?”

Kamailio Bytes – SIP UAC Module to act as a UAC / SIP Client

Kamailio is a great SIP proxy, but sometimes you might want to see requests originate from Kamailio.

While this isn’t typical proxy behaviour, RFC definitions of a proxy and technical requirements are often two different things. The UAC module allows us to use Kamailio to act as a User Agent Client instead of just a UAS.

There’s one feature I won’t cover in this post, and that’s initiating and outbound SIP Registration using the UAC module, that will get a post of it’s own in the not to distant future.

You may already be sort of using Kamailio is a UAC, if you’re using Dispatcher and sending SIP Pings, then Kamailio is sending SIP OPTIONS messages to the dispatcher destinations. If you’re using the NAT module and sending Keepalives, then you’re also using Kamailio as a UAC. The only difference is the Dispatcher and NAT Helper modules do this for us, and we’re going to originate our own traffic.

There’s a bit of a catch here, when Kamailio receives a request it follows a set of logic and does something with that request. We’re going to remain constrained by this for our example, just to keep things simple.

So let’s work on an example, if a user on our network dials a call to an emergency services number, we’ll send a text message to my IP phone to let me know who’s dialed the emergency services number.

So to start with we’ll need to load the Kamailio UAC module, using LoadModule as we would with any other module:

loadmodule "uac.so"

If you’re working on the default config file that ships with Kamailio you’ll probably have to change how record routing is handled to support UAC,

modparam("rr", "append_fromtag", 1)

Now we should have UAC support added in Kamailio, I’m going to do a bare bones example of the routing logic below, but obviously if you wanted to put this into practice in real life you’d want to actually route the SIP INVITE to an emergency services destination.

First we’ll need to find if the request is an INVITE with the Request URI to an emergency services number, I’ve programmed this in with the Australian emergency services numbers:

if(is_method("INVITE") && ($rU == "000" or $tU == "112" or $tU == "116")){      
  #Matches any INVITEs with the Request URI to Address as 000, 112 or 116
  xlog("Emergency call from $fU to $rU (Emergency number) CSeq is $cs ");
}

Now calls to 000, 112 or 116 will see the alert apear in Xlog:

07:22:41 voice-dev3 /usr/sbin/kamailio[10765]: ERROR: : Emergency call from Test to 112 (Emergency number)

So next up we need to handle the sending a SIP MESSAGE request to my IP phone on the IP 10.0.1.5 – You’re probably thinking we could use the Registrar module to lookup my registered IP address, and you’re right, but to keep things simple I’m just hardcoding it in.

So to keep our routing neat we’ll send calls to the route route(“EmergencyNotify”); and so the demo works I’ll send back a 200 OK and exit – In real life you’d want to handle this request and forward it onto emergency services.

if(is_method("INVITE") && ($rU == "000" or $tU == "112" or $tU == "116")){      
#Matches any INVITEs with the Request URI to Address as 000, 112 or 116
  xlog("Emergency call from $fU to $rU (Emergency number) CSeq is $cs ");
  route("EmergencyNotify");
  #You obviously would want this to route to an emergency services destination...
  sl_reply("200", "ok");
  exit;
}

if(is_method("INVITE")){                                                                                
  #Matches everything else
  xlog("Just a regular call from $fU to $rU");
}

Obviously we need to now create a route called route[“EmergencyNotify”]{ } where we’ll put our UAC logic.

For the UAC module we need to craft the SIP Request we’re going to send; we’re going to be sending a SIP MESSAGE request,

route["EmergencyNotify"]{
  xlog("Emergency Notify Route");
  $uac_req(method)="MESSAGE";
  $uac_req(ruri)="sip:10.0.1.5:5060";
  $uac_req(furi)="sip:Emergency Alert";
  $uac_req(turi)="sip:thisphone";
  $uac_req(callid)=$(mb{s.md5});
  $uac_req(hdrs)="Subject: Emergency Alert\r\n";
  $uac_req(hdrs)=$uac_req(hdrs) + "Content-Type: text/plain\r\n";
  $uac_req(body)="Emergency call from " + $fU + " on IP Address " + $si + " to " + $rU + " (Emergency Number)";
  $uac_req(evroute)=1;
  uac_req_send();
}

So now we’ve sort of put it all together, when a call comes into an emergency destination, like 000, the route EmergencyNotify is called which sends a SIP MESSAGE request to my IP Phone to alert me.

When a caller dials 000 I can see Kamailio sends a SIP MESSAGE to my IP Phone:

Let’s have a look at how this looks on my IP Phone:

I’ve fleshed out the code a little more to handle SIP REGISTER requests etc, and put the full running code on GitHub which you can find here.

IMS / VoLTE IPsec on the Gm Interface

For most Voice / Telco engineers IPsec is a VPN technology, maybe something used when backhauling over an untrusted link, etc, but voice over IP traffic is typically secured with TLS and SRTP.

IMS / Voice over LTE handles things a bit differently, it encapsulates the SIP & RTP traffic between the UE and the P-CSCF in IPsec Encapsulating Security Payload (ESP) payloads.

In this post we’ll take a look at how it works and what it looks like.

It’s worth noting that Kamailio recently added support for IPsec encapsulation on a P-CSCF, in the IMS IPSec-Register module. I’ll cover usage of this at a later date.

The Message Exchange

The exchange starts off looking like any other SIP Registration session, in this case using TCP for transport. The UE sends a REGISTER to the Proxy-CSCF which eventually forwards the request through to a Serving-CSCF.

This is where we diverge from the standard SIP REGISTER message exchange. The Serving-CSCF generates a 401 Unauthorized response, containing an authentication challenge in the WWW-Authenticate header, and also a Ciphering Key & Integrity Key (ck= and ik=) also in the WWW-Authenticate header.

The Serving-CSCF sends the Proxy-CSCF the 401 response it created. The Proxy-CSCF assigns a SPI for the IPsec ESP to use, a server port and client port and indicates the used encryption algorithm (ealg) and algorithm to use (In this case HMAC-SHA-1-96.) and adds a new header to the 401 Unauthorized called SecurityServer header to share this information with the UE.

The Proxy-CSCF also strips the Ciphering Key (ck=) and Integrity Key (ik=) headers from the SIP authentication challenge (WWW-Auth) and uses them as the ciphering and integrity keys for the IPsec connection.

Finally after setting up the IPsec server side of things, it forwards the 401 Unauthorized response onto the UE.

Upon receipt of the 401 response, the UE looks at the authentication challenge.

Keep in mind that the 3GPP specs dictate that IMS / VoLTE authentication requires mutual network authentication meaning the UE authenticates the network as well as the network authenticating the UE. I’ve written a bit about mutual network authentication in this post for anyone not familiar with it.

If the network is considered authenticated by the UE it generates a response to the Authentication Challenge, but it doesn’t deliver it over TCP. Using the information generated in the authentication challenge the UE encapsulates everything from the network layer (IPv4) up and sends it to the P-CSCF in an IPsec ESP.

Communication between the UE and the P-CSCF is now encapsulated in IPsec.

Wireshark trace of IPsec IMS Traffic between UE and P-CSCF

If you’re leaning about VoLTE & IMS networks, or building your own, I’d suggest checking out my other posts on the topic.

Kamailio Bytes – KEMI Intro

When learning to use Kamailio you might find yourself thinking about if you really want to learn to write a Kamailio configuration file, which is another weird scripting language to learn to achieve a task.

Enter KEMI – Kamailio Embedded Interface. KEMI allows you to abstract the routing logic to another programing language. In layman’s terms this means you can write your routing blocks, like request_route{}, reply_route{}, etc, in languages you already know – like Lua, JavaScript, Ruby – and my favorite – Python!

Why would you use KEMI?

Write in a language you already know;

You don’t need to learn how to do write complex routing logic in Kamailio’s native scripting language, you can instead do it in a language you’re already familiar with, writing your Routing Blocks in another programming language.

Change Routing on the Fly;

By writing the routing logic in KEMI allows you to change your routing blocks without having to restart Kamailio, something you can’t do with the “native” scripting language – This means you can change your routing live.

Note: This isn’t yet in place for all languages – Some still require a restart.

Leverage your prefered language’s libraries;

While Kamailio’s got a huge list of modules to interface with a vast number of different things, the ~200 Kamailio modules don’t compare with the thousands of premade libraries that exist for languages like Python, Ruby, JavaScript, etc.

Prerequisites

We’ll obviously need Kamailio installed, but we’ll also need the programming language we want to leverage setup (fairly obvious).

Configuring Kamailio to talk to KEMI

KEMI only takes care of the routing of SIP messages inside our routing blocks – So we’ve still got the Kamailio cfg file (kamailio.cfg) that we use to bind and setup the service as required, load the modules we want and configure them.

Essentially we need to load the app for the language we use, in this example we’ll use app_python3.so and use that as our Config Engine.

loadmodule "app_python3.so"
modparam("app_python3", "load", "/etc/kamailio/kemi.py")
cfgengine "python"

After that we just need to remove all our routing blocks and create a basic Python3 script to handle it,

We’ll create a new python file called kemi.py

## Kamailio - equivalent of routing blocks in Python
import sys
import Router.Logger as Logger
import KSR as KSR

# global function to instantiate a kamailio class object
# -- executed when kamailio app_python module is initialized
def mod_init():
    KSR.info("===== from Python mod init\n");
    return kamailio();


# -- {start defining kamailio class}
class kamailio:
    def __init__(self):
        KSR.info('===== kamailio.__init__\n');


    # executed when kamailio child processes are initialized
    def child_init(self, rank):
        KSR.info('===== kamailio.child_init(%d)\n' % rank);
        return 0;


    # SIP request routing
    # -- equivalent of request_route{}
    def ksr_request_route(self, msg):
        KSR.info("===== request - from kamailio python script\n");
        KSR.info("===== method [%s] r-uri [%s]\n" % (KSR.pv.get("$rm"),KSR.pv.get("$ru")));

So that’s it! We’re running,

The next step is of course, putting some logic into our Python script, but that’s a topic for another day, which I’ve covered in this post.

Running code for kamailio.cfg (Kamailio config) and kemi.py (Python3 script).

Using Wireshark to peer inside IPsec ESP VoLTE data from the P-CSCF

IPsec ESP can be used in 3 different ways on the Gm interface between the Ue and the P-CSCF:

  • Integrity Protection – To prevent tampering
  • Ciphering – To prevent inception / eavesdropping
  • Integrity Protection & Ciphering

On Wireshark, you’ll see the ESP, but you won’t see the payload contents, just the fact it’s an Encapsulated Security Payload, it’s SPI and Sequence number.

By default, Kamailio’s P-CSCF only acts in Integrity Protection mode, meaning the ESP payloads aren’t actually encrypted, with a few clicks we can get Wireshark to decode this data;

Just open up Wireshark Preferences, expand Protocols and jump to ESP

Now we can set the decoding preferences for our ESP payloads,

In our case we’ll tick the “Attempt to detect/decode NULL encrypted ESP payloads” box and close the box by clicking OK button.

Now Wireshark will scan through all the frames again, anything that’s an ESP payload it will attempt to parse.

Now if we go back to the ESP payload with SQN 1 I showed a screenshot of earlier, we can see the contents are a TCP SYN.

Now we can see what’s going on inside this ESP data between the P-CSCF and the UE!

As a matter of interest if you can see the IK and CK values in the 401 response before they’re stripped you can decode encrypted ESP payloads from Wireshark, from the same Protocol -> ESP section you can load the Ciphering and Integrity keys used in that session to decrypt them.

If you’re leaning about VoLTE & IMS networks, or building your own, I’d suggest checking out my other posts on the topic.

SIP Supported & Require

On top of plain vanilla RFC3261, there’s a series of “Extension” methods added to SIP to expand it’s functionality, common extension methods are INFO, MESSAGE, NOTIFY, PRACK and UPDATE. Although now commonplace, of these is not defined in RFC3261 so is considered an “extension” to SIP.

It’s worth just pausing here to reiterate we’re not talking extensions like in a PBX context, like extra phones, we’re talking extensions like you’d add to a house, like extra functionality.

A SIP client can request functionality from a server (UAC to a UAS), if the server does not have support for that functionality, it can reject the session on those grounds and send back a response indicating it doesn’t know how to handle that extension, like a 420 Bad ExtensionBad SIP Protocol Extension used, not understood by the server. Response.

So clients can determine what functionality a server doesn’t support if it rejects the request, but there was no way to see what functionality the server does support, and what functionality the client requires.

Enter the Supported header, initially drafted by Rosenberg & Schulzrinne in 2000, it made it into the SIP we know today (SIP v2 / RFC3261).

If a UAC or UAS requires support for an extension – For example a Media Gateway has to understand PRACK, it can use the Require header to specify the request should be rejected if support for the listed extensions is not provided.

These headers are most commonly seen in SIP OPTIONS requests.

Kamailio Bytes – Configuring Diameter Peers with CDP

I’ve talked a little about my adventures with Diameter in the past, the basics of Diameter, the packet structure and the Python HSS I put together.

Kamailio is generally thought of as a SIP router, but it can in fact handle Diameter signaling as well.

Everything to do with Diameter in Kamailio relies on the C Diameter Peer and CDP_AVP modules which abstract the handling of Diameter messages, and allow us to handle them sort of like SIP messages.

CDP on it’s own doesn’t actually allow us to send Diameter messages, but it’s relied upon by other modules, like CDP_AVP and many of the Kamailio IMS modules, to handle Diameter signaling.

Before we can start shooting Diameter messages all over the place we’ve first got to configure our Kamailio instance, to bring up other Diameter peers, and learn about their capabilities.

C Diameter Peer (Aka CDP) manages the Diameter connections, the Device Watchdog Request/Answers etc, all in the background.

We’ll need to define our Diameter peers for CDP to use so Kamailio can talk to them. This is done in an XML file which lays out our Diameter peers and all the connection information.

In our Kamailio config we’ll add the following lines:

loadmodule "cdp.so"
modparam("cdp", "config_file", "/etc/kamailio/diametercfg.xml")
loadmodule "cdp_avp.so"

This will load the CDP modules and instruct Kamailio to pull it’s CDP info from an XML config file at /etc/kamailio/diametercfg.xml

Let’s look at the basic example given when installed:

<?xml version="1.0" encoding="UTF-8"?>
<!-- 

 DiameterPeer Parameters 
  - FQDN - FQDN of this peer, as it should apper in the Origin-Host AVP
  - Realm - Realm of this peer, as it should apper in the Origin-Realm AVP
  - Vendor_Id - Default Vendor-Id to appear in the Capabilities Exchange
  - Product_Name - Product Name to appear in the Capabilities Exchange 
  - AcceptUnknownPeers - Whether to accept (1) or deny (0) connections from peers with FQDN 
    not configured below
  - DropUnknownOnDisconnect - Whether to drop (1) or keep (0) and retry connections (until restart)
    unknown peers in the list of peers after a disconnection.
  - Tc - Value for the RFC3588 Tc timer - default 30 seconds
  - Workers - Number of incoming messages processing workers forked processes.
  - Queue - Length of queue of tasks for the workers:
     - too small and the incoming messages will be blocked too often;
     - too large and the senders of incoming messages will have a longer feedback loop to notice that
     this Diameter peer is overloaded in processing incoming requests;
     - a good choice is to have it about 2 times the number of workers. This will mean that each worker
     will have about 2 tasks in the queue to process before new incoming messages will start to block.
  - ConnectTimeout - time in seconds to wait for an outbound TCP connection to be established.
  - TransactionTimeout - time in seconds after which the transaction timeout callback will be fired,
    when using transactional processing.
  - SessionsHashSize - size of the hash-table to use for the Diameter sessions. When searching for a 
    session, the time required for this operation will be that of sequential searching in a list of 
    NumberOfActiveSessions/SessionsHashSize. So higher the better, yet each hashslot will consume an
    extra 2xsizeof(void*) bytes (typically 8 or 16 bytes extra).
  - DefaultAuthSessionTimeout - default value to use when there is no Authorization Session Timeout 
  AVP present.
  - MaxAuthSessionTimeout - maximum Authorization Session Timeout as a cut-out measure meant to
  enforce session refreshes.
      
 -->
<DiameterPeer 
        FQDN="pcscf.ims.smilecoms.com"
        Realm="ims.smilecoms.com"
        Vendor_Id="10415"
        Product_Name="CDiameterPeer"
        AcceptUnknownPeers="0"
        DropUnknownOnDisconnect="1"
        Tc="30"
        Workers="4"
        QueueLength="32"
        ConnectTimeout="5"
        TransactionTimeout="5"
        SessionsHashSize="128"
        DefaultAuthSessionTimeout="60"
        MaxAuthSessionTimeout="300"
>

        <!--
                Definition of peers to connect to and accept connections from. For each peer found in here
                a dedicated receiver process will be forked. All other unkwnown peers will share a single
                receiver. NB: You must have a peer definition for each peer listed in the realm routing section
        -->
        <Peer FQDN="pcrf1.ims.smilecoms.com" Realm="ims.smilecoms.com" port="3868"/>
        <Peer FQDN="pcrf2.ims.smilecoms.com" Realm="ims.smilecoms.com" port="3868"/>
        <Peer FQDN="pcrf3.ims.smilecoms.com" Realm="ims.smilecoms.com" port="3868"/>
        <Peer FQDN="pcrf4.ims.smilecoms.com" Realm="ims.smilecoms.com" port="3868"/>
        <Peer FQDN="pcrf5.ims.smilecoms.com" Realm="ims.smilecoms.com" port="3868"/>
        <Peer FQDN="pcrf6.ims.smilecoms.com" Realm="ims.smilecoms.com" port="3868"/>

        <!--
                Definition of incoming connection acceptors. If no bind is specified, the acceptor will bind
                on all available interfaces.
        -->
        <Acceptor port="3868"  />
        <Acceptor port="3869" bind="127.0.0.1" />
        <Acceptor port="3870" bind="192.168.1.1" />

        <!--
                Definition of Auth (authorization) and Acct (accounting) supported applications. This
                information is sent as part of the Capabilities Exchange procedures on connecting to
                peers. If no common application is found, the peers will disconnect. Messages will only
                be sent to a peer if that peer actually has declared support for the application id of 
                the message.
        -->
        <Acct id="16777216" vendor="10415" />
        <Acct id="16777216" vendor="0" />
        <Auth id="16777216" vendor="10415"/>
        <Auth id="16777216" vendor="0" />

        <!-- 
                Supported Vendor IDs - list of values which will be sent in the CER/CEA in the
                Supported-Vendor-ID AVPs
        -->
        <SupportedVendor vendor="10415" />

        <!--
                Realm routing definition.
                Each Realm can have a different table of peers to route towards. In case the Destination
                Realm AVP contains a Realm not defined here, the DefaultRoute entries will be used.

                Note: In case a message already contains a Destination-Host AVP, Realm Routeing will not be
                applied.
                Note: Routing will only happen towards connected and application id supporting peers.
                
                The metric is used to order the list of prefered peers, while looking for a connected and
                application id supporting peer. In the end, of course, just one peer will be selected.
        -->
        <Realm name="ims.smilecoms.com">
                <Route FQDN="pcrf1.ims.smilecoms.com" metric="3"/>
                <Route FQDN="pcrf2.ims.smilecoms.com" metric="5"/>
        </Realm>

        <Realm name="temp.ims.smilecoms.com">
                <Route FQDN="pcrf3.ims.smilecoms.com" metric="7"/>
                <Route FQDN="pcrf4.ims.smilecoms.com" metric="11"/>
        </Realm>
        <DefaultRoute FQDN="pcrf5.ims.smilecoms.com" metric="15"/>
        <DefaultRoute FQDN="pcrf6.ims.smilecoms.com" metric="13"/>


</DiameterPeer>

First we need to start by telling CDP about the Diameter peer it’s going to be – we do this in the <DiameterPeer section where we define the FQDN and Diameter Realm we’re going to use, as well as some general configuration parameters.

<Peers are of course, Diameter peers. Defining them here will mean a connection is established to each one, Capabilities exchanged and Watchdog request/responses managed. We define the usage of each Peer further on in the config.

The Acceptor section – fairly obviously – sets the bindings for the addresses and ports we’ll listen on.

Next up we need to define the Diameter applications we support in the <Acct id=” /> and <SupportedVendor> parameters, this can be a little unintuitive as we could list support for every Diameter application here, but unless you’ve got a module that can handle those applications, it’s of no use.

Instead of using Dispatcher to manage sending Diameter requests, CDP handles this for us. CDP keeps track of the Peers status and it’s capabilities, but we can group like Peers together, for example we may have a pool of PCRF NEs, so we can group them together into a <Realm >. Instead of calling a peer directly we can call the realm and CDP will dispatch the request to an up peer inside the realm, similar to Dispatcher Groups.

Finally we can configure a <DefaultRoute> which will be used if we don’t specify the peer or realm the request needs to be sent to. Multiple default routes can exist, differentiated based on preference.

We can check the status of peers using Kamcmd’s cdp.list_peers command which lists the peers, their states and capabilities.

Kamailio Bytes – Dispatcher States

You may already be familiar with Kamailio’s Disptacher module, if you’re not, you can learn all about it in my Kamailio Bytes – Dispatcher Module post.

One question that’s not as obvious as it perhaps should be is the different states shown with kamcmd dispatcher.list command;

So what do the flags for state mean?

The first letter in the flag means is the current state, Active (A), Inactive (I) or Disabled (D).

The second letter in the flag means monitor status, Probing (P) meaning actively checked with SIP Options pings, or Not Set (X) denoting the device isn’t actively checked with SIP Options pings.

AP Actively Probing – SIP OPTIONS are getting a response, routing to this destination is possible, and it’s “Up” for all intents and purposes.

IPInactively Probing – Destination is not meeting the threshold of SIP OPTIONS request responses it needs to be considered active. The destination is either down or not responding to all SIP OPTIONS pings. Often this is due to needing X number of positive responses before considering the destination as “Up”.

DX Disabled & Not Probing – This device is disabled, no SIP OPTIONS are sent.

AX Active & Not Probing– No SIP OPTIONS are sent to check state, but is is effectively “Up” even though the remote end may not be reachable.

Kamailio Bytes – Rewriting SIP Headers (Caller ID Example)

Back to basics today,

In the third part of the Kamailio 101 series I briefly touched upon pseudovariables, but let’s look into what exactly they are and how we can manipulate them to change headers.

The term “pseudo-variable” is used for special tokens that can be given as parameters to different script functions and they will be replaced with a value before the execution of the function.

https://www.kamailio.org/wiki/cookbooks/devel/pseudovariables

You’ve probably seen in any number of the previous Kamailio Bytes posts me use pseudovariables, often in xlog or in if statements, they’re generally short strings prefixed with a $ sign like $fU, $tU, $ua, etc.

When Kamailio gets a SIP message it explodes it into a pile of variables, getting the To URI and putting it into a psudovariable called $tU, etc.

We can update the value of say $tU and then forward the SIP message on, but the To URI will now use our updated value.

When it comes to rewriting caller ID, changing domains, manipulating specific headers etc, pseudovariables is where it mostly happens.

Kamailio allows us to read these variables and for most of them rewrite them – But there’s a catch. We can mess with the headers which could result in our traffic being considered invalid by the next SIP proxy / device in the chain, or we could mess with the routing headers like Route, Via, etc, and find that our responses never get where they need to go.

So be careful! Headers exist for a reason, some are informational for end users, others are functional so other SIP proxies and UACs can know what’s going on.

Rewriting SIP From Username Header (Caller ID)

When Kamailio’s SIP parser receives a SIP request/response it decodes the vast majority of the SIP headers into a variety of pseudovariables, we can then reference these variables we can then reference from our routing logic.

Let’s pause here and go back to the Stateless SIP Proxy Example, as we’ll build directly on that.

Follow the instructions in that post to get your stateless SIP proxy up and running, and we’ll make this simple change:

####### Routing Logic ########


/* Main SIP request routing logic
 * - processing of any incoming SIP request starts with this route
 * - note: this is the same as route { ... } */
request_route {

        xlog("Received $rm to $ru - Forwarding");
        $fU = "Nick Blog Example";   #Set From Username to this value
        #Forward to new IP
        forward("192.168.1.110");

}

Now when our traffic is proxied the From Username will show “Nick Blog Example” instead of what it previously showed.

Pretty simple, but very powerful.

As you’ve made it this far might be worth familiarising yourself with the different types of SIP proxy – Stateless, Transaction Stateful and Dialog Stateful.

Samsung-Sysdump-IMS-Debug-DM-View_Cropped

VoLTE/IMS Debugging on Samsung Handsets using Sysdump & Samsung IMS Logger

Samsung handsets have a feature built in to allow debugging from the handset, called Sysdump.

Entering *#9900# from the Dialing Screen will bring up the Sysdump App, from here you can dump logs from the device, and run a variety of debugging procedures.

Samsung share information about this app publicly on their website,

Sysdump App in Samsung handsets used for debugging the device

But for private LTE operators, the two most interesting options are by far the TCPDUMP START option and IMS Logger, but both are grayed out.

Tapping on them asks for a one-time password and has a challenge key.

OTP Authentication required to unlock IMS Debugging and TCPDUMP on Samsung Sysdump tool

These options are not available in the commercial version of the OS and need to be unlocked with a one time key generated by a tool Samsung for unlocking engineering firmware on handsets.

Luckily this authentication happens client side, which means we can work out the password it’s expecting.

For those interested I’ve done a write up of how I reversed the password validation algorithm to take the key given in the OTP challenge and generate a valid response.

For those who just want to unlock these features you can click here to run the tool that generates the response.

Once you’ve entered the code and successfully unlocked the IMS Debugging tool there’s a few really cool features in the hamburger menu in the top right.

DM View

This shows the SIP / IMS Messaging and the current signal strength parameters (used to determine which RAN type to use (Ie falling back from VoLTE to UMTS / Circuit Switched when the LTE signal strength drops).

Screenshot of Samsung Sysdump tool in the IMS Debug - DM View section

Tapping on the SIP messages expands them and allows you to see the contents of the SIP messages.

Viewing SIP Messaging directly from the handset

Interesting the actual nitty-gritty parameters in the SIP headers are missing, replaced with X for anything “private” or identifiable.

Luckily all this info can be found in the Pcap.

The DM View is great for getting a quick look at what’s going on, on the mobile device itself, without needing a PC.

Logging

The real power comes in the logging functions,

There’s a lot of logging options, including screen recording, TCPdump (as in Packet Captures) and Syslog logging.

From the hamburger menu we can select the logging parameters we want to change.

Settings for Samsung IMS Logger

From the Filter Options menu we can set what info we’re going to log,

Filter options used in Dump output of Samsung IMS Logger application

If you’re leaning about VoLTE & IMS networks, or building your own, I’d suggest checking out my other posts on the topic.

Anatomy of Local Number Portability in Australia

The Australian telecommunications industry was deregulated in 1997, meaning customers could have telecommunications services through a Carriage Service Provider (CSP) of their choice.

In order to increase competition and make it easier to move to a different CSP, the ACMA (Or as they were then the ACA) declared that Local Numbers (Geo numbers / land lines) were a “Portable Service”. This meant that if a customer didn’t like their current Carriage Service Provider (CSP) they could give them the flick (making them the Loosing Carrier), move to a new CSP (Gaining Carrier) but keep their existing phone numbers by moving them to the new carrier in a process known as Local Number Portability (LNP).

The Local Number Portability (LNP) standard was first defined by Comms Alliance in 1999 in ACIF C540 and defines the process of moving numbers between Carriage Service Providers (CSPs), however 22 years later the process can still be a baffling system for many customers, end users and carrier staff to navigate.

Acronyms galore exist and often the porting teams involved themselves aren’t 100% sure what goes on in the porting process.

In 1997 ISDN was first still an emerging technology and porting was typically a customer moving from one PSTN / POTS line provided by one CSP to another PSTN / POTS line provided by a different CSP – a simple port.

Two processes were defined, one for managing simple ports involving moving one simple number from one CSP to another CSP – Called Simple Porting or “Cat A” – which made up the majority of porting requests at the time, and another process for everything else managed by a project manager from the Loosing and Gaining CSP called Complex Porting or “Cat C“.

Since 1997, the advent of the NBN, VoIP, SIP and the announcement that one of Australia’s largest carriers is shutting down their ISDN network by 2020, means that today the majority of ports a business customer will face will be Cat C – Complex Ports.

LNP is an issue worldwide, and ENUM was released to try and make this a bit better, however it had one short trial in Australia a long time ago and hasn’t been looked at since.

Cat A / Simple Number Porting

Simple porting, classified as “Cat A” is used for porting single simple services (numbers).

The Cat A process can only be used for moving a “simple” standalone number – with no additional features – from one carrier to another.

The typical use case for Cat A port is moving a one copper PSTN / POTS line (Active line with no Fax Duet, Line Hunt, etc) from one carrier to another – as I said before, Cat A ports made up the majority of porting requests when the system was first introduced as the vast majority of services were copper POTS lines.

The process is automated at both ends, essentially the carriers send each other the numbers to be moved (more on that later) and their switches automatically process this and begin routing the number.

These ports are typically completed within a few days to a week and the customer gets a notification when the port is completed.

Cat C / Complex Number Porting

For all number porting that don’t meet the very specific requirements of Cat A aren’t met – and sometimes even if they are met, ports are processed as Cat C ports.

Cat C ports require a project manager at both the Gaining Carrier and the Loosing Carrier to agree on the details for the port and the move the numbers, each using their own internal process.

Lead times on Cat C ports are long – and getting longer, so from submitting a port to it’s completion can take 90+ days, and there is no confirmation required to the customer to let them know the services have been ported successfully.

Administrative Process of Ports (CatA & CatC)

Strap yourself in for a whirlwind of acronyms…

The Code does not constrain two or more individual industry participants agreeing to different arrangements

Section 1.3.6

Because of this it means this is the minimum standard, some CSPs have improved upon this between each other, however there’s a bit of a catch 22 in that CSPs have no incentive to make porting numbers out easier, as they’re typically loosing that customer, so the process is typically not improved upon in any meaningful way that makes the customer experience easier.

Without further ado, here’s what Cat A & Cat C ports look like under the hood…

Note: These all assume the Losing CSP is also the Donor CSP. More on that in the LNP FAQ and Call Routing posts.

Cat A – Simple Porting – Process

Summary

Cat A ports are automated – The process involves CSPs transferring formatted data between each other and the process that goes on for these ports.

The Loosing CSP must use the Cat A process if the service meets the requirements to be ported under a Cat A and the Gaining Carrier has submitted it as a Cat A port. This means a Cat A port can’t be rejected by the loosing carrier as not a valid Cat A port to be resubmitted as a Cat C port, if it does actually meet the requirements for Cat A porting. That said numbers that are valid in terms of Cat A can be submitted as a Cat C, this is often cheaper than submitting multiple Cat A porting requests when you have more than 5 or so services to be ported.

Here’s a brief summary of the process:

  • Customer requests port and details are validated
  • Simple Notification Advice (SNA) is sent to the Loosing CSP via a Porting Notification Order (PNO) – Essentially a form send to the loosing CSP of the intention to port the service
  • Loosing CSP sends back SNA Confirmation Advice to confirm the service can be ported
  • Electronic Cutover Advice (ECA) sent by gaining CSP to indicate gaining CSP wanting to initiate port
  • Loosing CSP provides Donor Routing by essentially redirecting calls to the Gaining CSP
  • ECA Confirmation Advice sent by loosing CSP to denote the service has been removed from the loosing CSP’s network & number is with gaining CSP as far as they are concerned
  • Losing CSP updates a big text file (PLNR) with a list of numbers allocated to it, to show the numbers have been ported to a different carrier and indicates which carrier

We’ll talk about the technical process of how the data is transferred, what PLNR is and how routing is managed, later on.

In depth process:

Step 1 – Customer Authority

The Gaining CSP must obtain Customer’s Authority (CA) to port number (Section 4.1.2) – Typically this takes the form of a number porting form filled in by the customer, containing a list of numbers to port, account numbers with loosing carrier and date.

If requested by the customer the Loosing CSP must explain any costs / termination payments / contractual obligations to the customer (Section 4.1.4), however the Loosing CSP cannot reject the port based upon an outstanding contract being in place.

Step 2 – Validation

Before anything technical happens, the Gaining CSP must validate the porting request is valid – this means verifying:

  • The requested numbers are able to be ported under the selected method (Cat A or Cat C)
  • Confirming the date of the Customer Authority is less than 90 days old
  • The requested numbers must be recorded

In practice these 3 steps are typically handled by a single form filled out by the customer in the first step. (Section 4.1.5)

If requested by the Loosing CSP this Customer Authority information has to be given to the Loosing CSP. This typically happens in cases of disputed ownership / management of a number.

Step 3 – The SNA PNO

Once the Gaining CSP is satisfied the port is valid, a Simple Notification Advice (SNA) is sent to the Loosing CSP via a Porting Notification Order (PNO) (Section 4.2.2).

The PNO is essentially a form that includes:

  • Area Code & Telephone Number of service to be ported
  • Service Account number with Loosing CSP
  • Porting Category set to Cat A
  • Date of Customer Authority

The Loosing CSP must then validate this info, by checking: (Section 4.2.4)

  • The requested number is a Simple service (Meets the requirements of Cat A)
  • Is with the Loosing CSP (Has not been ported to another carrier already)
  • Is not disconnected or pending disconnection at the time the SNA was submitted
  • The Customer Authority (CA) date is not more than 90 days old
  • Does not currently have a port request pending

After the Loosing CSP has gone through this they will send back a SNA Confirmation Advice if the port request (SNA PNO) is valid or a SNA Reject Advice along with the phone number and reason for rejection if the port request is deemed invalid.

The confirmation, if SNA Confirmation Advice is received, is deemed valid for 30 days, after which the process would have to start again and the SNA PNO would have to be regenerated.

Step 4 – Electronic Cutover Advice (ECA)

After the Loosing CSP sends back a SNA Confirmation Advice, the gaining carrier sends the Loosing Carrier an Electronic Cutover Advice (ECA) via the Final Cutover Notification Interface (Section 4.2.24 ).

When the Loosing CSP get the ECA it’s showtime. The Loosing CSP checks that there’s a valid SNA in place for the number to be ported and that it’s less than 2 days old (Section 4.2.27).

If the Loosing CSP is not satisfied they send back a ECA Reject Advice listing the reason for rejection within 15 minutes (Section 4.2.32).

If all looks good, the Loosing Carrier sends the Gaining CSP back a ECA Confirmation Advice within 15 minutes (Section 4.2.33).

Now is when the magic happens – the Loosing CSP “ports out” that number via their internal process, for this they provide temporary Donor Transit Routing – Essentially redirecting any calls that come into the ported number to the new carrier.

Finally the Loosing CSP sends a Electronic Completion Advice (ECA) to confirm they’ve processed the port out from their network (Section 4.2.34).

Within a day of the port completing, the Losing CSP updates the Ported Local Number Registry (PLNR) to show the service has been ported out and the identifier of the gaining carrier the number has been ported to. PLNR is nothing more than a giant text file containing a list of all the numbers originally allocated to the Loosing CSP and the carrier code they should now be routing to, this data is published so the other CSPs can read it.

Other CSPs read this PLNR data and update their routing tables, meaning the calls will route directly to the new Gaining CSP, and the Donor Routing can be removed on the Losing CSPs switch.

Cat C – Complex Porting – Process

Summary

Cat C ports are a manually project managed, and unlike Cat A are not automated.

This means that the Loosing and Gaining CSP must both allocate a “project manager”, the two to liaise with each other (typically via email) to confirm the numbers can be ported and then find a suitable time to port the numbers, finally at the agreed upon date & time each side kicks off their own process to move the numbers and confirm when it’s done.

Porting Number Validation – PNV

Before a Cat C port can be initiated the PNV process is typically called upon to validate the port won’t get rejected. This isn’t mandatory but is often used as PNV is processed relatively quickly which means any issues with the services can be worked out prior to submitting the port request.

The submitted PNV request is very similar to the actual Cat C porting request (CNA), containing the customer’s details and list of services to be ported.

The loosing CSP returns the list of numbers each with a response code denoting particulars of the service, and if rejected, a rejection code.

Response Codes:

Reason CodeReason
P Prime/Directory Service Number
A Associated Service Numbers
SStandalone Number
RReserved Number
DExchange based diversion
SS Secondary Service linked to this Number (e.g. DSL)

Reject Codes:

CodeReason
1 Invalid Customer Authorization date Whole Request
2 Insufficient information supplied Whole Request
3 Telephone Number appears to belong to a completely different end customer Per Number
4 Telephone Numbers relate to cancelled services or services pending cancellation Per Number
5 Missing / invalid PNV Sequence Number Per Number
6 Telephone Numbers in the PNV request relate to services which are billed by a service provider other than the Losing Carrier. Per Number
7 Telephone Numbers are not found / not present on Losing Carrier’s Network Per Number

(Section 4.3.8)

It’s worth noting the main reason PNV is used so heavily in Cat C ports is if a batch of numbers / services are requested to be ported in a single Cat C porting request, if any one of those numbers gets rejected the whole port will need to be resubmitted, hence it being important that before submitting the numbers to be ported, the Gaining CSP verifies they can be ported via the PNV process.

The PNV does not guarantee a physical audit of the services, but rather an audit of available electronic data by the loosing CSP. It’s also only valid for the day of issue, so services can change between a PNV coming back clear and the port request being rejected.

99% of PNV requests should be processed within 5 business days. (Section 4.3.9)

Step 1 – Complex Notification Advice (CNA)

To initiate the port the gaining CSP submits a Complex Notification Advice (CNA) to the loosing CSP.

This contains all the data you’d expect, including customer’s details and the list of services/numbers to be ported, along with a batch number that’s unique to the Gaining CSP (Like a ticket / request number) and Gaining CSP’s Project Manager – The staff member as the Gaining CSP that will be responsible for the port.

Upon receipt, the Loosing CSP sends back a CNA Receipt Advice to confirm they’ve received and begins validating the CNA in a process very similar to the PNV process. (Section 4.4.1)

Step 2 – CNA Confirmation Advice

If verification fails and the CNA request is deemed not valid the CNA is rejected by the Loosing CSP, who sends back a CNA Reject Advice response. This response will contain a list of services and the reject code for each rejected service as per the PNV process.

If the CNA is deemed valid, the Loosing CSP responds with a CNA Confirmation Advice message, containing the Loosing CSP’s project manager for this port, along with the Gaining CSP’s batch number to the Gaining CSP.

This is sent in a batch file along with other CNA Confirmation Advice messages within 5 days. (Section 4.4.6)

Step 3 – Complex Cutover Advice (CCA)

Once the Gaining CSP has the CNA Confirmation Advice the project manager for the port at the Gaining CSP contacts the nominated project manager at the Loosing CSP and the two have to agree on a cutover date and time for the port. (Section 4.4.8)

The agreed date and time of the port is sent by the Gaining CSP to the Loosing CSP in the from of a Complex Cutover Advice (CCA) containing the Gaining CSP batch number and agreed date & time. (Section 4.4.27)

If the details of the CCA are valid from the Loosing CSP’s perspective, the Loosing CSP sends back CCA Confirmation Advice to confirm receipt.

Step 4 – The Porting

At the agreed upon date & time both CSPs are to execute the port from their organization’s perspective.

Typically the loosing CSP provides Donor Transit Routing forwarding / redirecting calls to the ported out number to the new CSP.

There is no completion advice and no verification the port has been completed successfully required by the code. (Section 4.4.48)

Within a day of the port completing, the Losing CSP updates the Ported Local Number Registry (PLNR).

Other CSPs read this PLNR data and update their routing tables, meaning the calls will route directly to the new Gaining CSP, and the Donor Routing can be removed on the Losing CSPs switch.

If you’ve made it this far I’m amazed. I’ve written two more posts on LNP that are relvant to this one, one with an FAQ on number porting, and another with info on how call routing in LNP works.

The case for Header Compression in VoIP/VoLTE

On a PCM (G.711) RTP packet the payload is typically 160 bytes per packet.

But the total size of the frame on the wire is typically ~214 bytes, to carry a 160 byte payload that means 25% of the data being carried is headers.

This is fine for VoIP services operating over fixed lines, but when we’re talking about VoLTE / IMS and the traffic is being transferred over Radio Access Networks with limited bandwidth / resources, it’s important to minimize this as much as possible.

IMS uses the AMR codec, where the RTP payload for each packet is around 90 bytes, meaning up to two thirds of the packet on the wire (Or in this case the air / Uu interface) is headers.

Enter Robust Header Compression which compresses the headers.

Using ROHC the size of the headers are cut down to only 4-5 bytes, this is because the IPv4 headers, UDP headers and RTP headers are typically the same in each packet – with only the RTP Sequence number, RTP timestamp IPv4 & UDP checksum and changing between frames.

Load Testing with SIPp

I recently wrote a post on software-based transcoding limits on common virtualisation hardware.

To do this I needed to make a lot of calls, consistently, so as to generate some pretty graphs and stats.

To do this, I used SIPp (a performance testing tool for SIP) to simulate many concurrent calls leading to many concurrent transcoding sessions.

Installation

I built SIPp on Ubuntu 18.04:

apt-get install make autoconf pkg-config automake libncurses5-dev libpcap*
git clone https://github.com/SIPp/sipp.git
cd sipp/
./build.sh --with-rtpstream 
cp sipp /usr/local/bin/

Next I setup RTPengine and setup Kamailio to use it.

I modified the Kamailio config allow Transcoding, as I talked about in the post on setting up Transcoding in RTPengine with Kamailio.

Now I had a working Kamailio instance with RTPengine that was transcoding.

So the next step becomes testing the transcoding is working, for this I had two SIPp instances, one to make the calls and once to answer them.

Instance 1

Makes calls to the IP of the Kamailio / RTPengine instance, for this I modified the uac_pcap scenario to playback an RTP stream of a PCMA (G.711 a-law) call to the called party (stored in a pcap file), and made it call the Kamailio instance multiple times based on how many concurrent transcoding sessions I wanted:

sipp -m 120 -r 200 -sf uac_pcap.xml rtpenginetranscode.nickvsnetworking.com

Instance 2

Instance 2 acted as a simple SIP UAS, the call came in, it answered and echoed back the RTP stream it received.

sipp -rtp_echo -sf uas.xml

Kamailio Bytes – DMQ

We’ve talked about using a few different modules, like a SIP Registrar and Htable, that rely on data stored in Kamailio’s memory, the same is true for all the Stateful proxy discussion last week.

But what if you want to share this data between multiple Kamailio instances? This allows distributing workload and every server having the same information and therefore any server is able to process any request.

Enter DMQ the Distributed Messaging Queue,

This allows memory data to be shared between multiple Kamailio instances (aka “Nodes”), so for example if you are storing data in Htable on one Kamailio box, all the other boxes/nodes in the DMQ pool will have the same HTable data.

Kamailio uses SIP to transfer DMQ messages between DMQ nodes, and DNS to discover DMQ nodes.

For this example we’ll share user location data (usrloc) between Kamailio instances, so we’ll create a very simple setup to store location data:

####### Routing Logic ########


/* Main SIP request routing logic
 * - processing of any incoming SIP request starts with this route
 * - note: this is the same as route { ... } */
request_route {

        #Enable record_routing so we see the BYE / Re-INVITE etc

        if(is_method("REGISTER")){

                save("location");
        }else{
                sl_reply("500", "Nope");
        }


}

Now if we register a SIP endpoint we should be able to view it using Kamcmd’s ul.dump call, as we talked about in the Kamailio SIP Registrar tutorial.

Next we’ll setup DMQ to allow this data to be shared to other nodes, so they also have the same userloc data available,

First we’ll begin by binding to an extra port for the DMQ messages to go to, to make it a bit clearer what is normal SIP and what’s DMQ,

So for this we’ll add a new line in the config to listen on port 5090:

/* uncomment and configure the following line if you want Kamailio to
 * bind on a specific interface/port/proto (default bind on all available) */
listen=udp:0.0.0.0:5060
listen=tcp:0.0.0.0:5060
listen=udp:0.0.0.0:5090

Next we’ll load the DMQ modules and set them up:

loadmodule "dmq.so"
loadmodule "dmq_usrloc.so"

# ---- dmq params ----
modparam("dmq", "server_address", "sip:0.0.0.0:5090")
modparam("dmq", "notification_address", "sip:dmq.nickvsnetworking.com:5090")
modparam("dmq", "multi_notify", 1)
modparam("dmq_usrloc", "enable", 1)

The server_address means we’re listening on any IP on port 5090. In production you may have an IP set here of a private NIC or something non public facing.

The notification address resolves to 2x A records, one is the IP of this Kamailio instance / node, the other is the IP of the other Kamailio instance / node, I’ve just done this in /etc/hosts

root@dmq1:/etc/kamailio# nslookup dmq.nickvsnetworking.com
 Server:         127.0.0.53
 Address:        127.0.0.53#53
 Non-authoritative answer:
 Name:   dmq.nickvsnetworking.com
 Address: 192.168.3.121
 Name:   dmq.nickvsnetworking.com
 Address: 192.168.3.116

Finally we’ll add some routing logic to handle the DMQ messages coming in on port 5090:

####### Routing Logic ########


/* Main SIP request routing logic
 * - processing of any incoming SIP request starts with this route
 * - note: this is the same as route { ... } */
request_route {


        if (is_method("KDMQ") && $Rp == 5090)
        {
                dmq_handle_message();
        }

        #Enable record_routing so we see the BYE / Re-INVITE etc

        if(is_method("REGISTER")){

                save("location");
        }else{
                sl_reply("500", "Nope");
        }


}

We’ll put the same config on the other Kamailio instance and restart Kamailio on both.

We can now check the DMQ node status to confirm they’re talking to each other.

root@dmq1:/etc/kamailio# kamcmd dmq.list_nodes
 {
         host: 192.168.3.116
         port: 5090
         resolved_ip: 192.168.3.116
         status: active
         last_notification: 0
         local: 0
 }
 {
         host: 192.168.3.121
         port: 5090
         resolved_ip: 192.168.3.121
         status: active
         last_notification: 0
         local: 0
 }
 {
         host: 0.0.0.0
         port: 5090
         resolved_ip: 0.0.0.0
         status: active
         last_notification: 0
         local: 1
 }

Bingo they are,

Now if I register to one of these two instances, I can run a kamcmd ul.dump on either and they’ll both have the same data. Magic!

As always I’ve posted a copy of my code on GitHub here.

Kamailio Bytes – Transaction Module

We talked a little about the Transaction module and using it for Transaction Stateful SIP Proxy, but it’s worth knowing a bit more about the Transaction Module and the powerful functions it offers.

So today I’ll cover some cool functionality TM offers!

Different Reply Routes

By calling the t_on_reply(); we can specify the reply route to be used for replies in this transaction.

route[RELAY]{

        #Use reply route "OurReplyRoute" for responses for this transaction
        t_on_reply("OurReplyRoute");

        #Relay (aka Forward) the request
        t_relay_to_udp("192.168.3.118", "5060");

}

onreply_route[OurReplyRoute] {
        #On replies from route[RELAY]

        #Check our AVP we set in the initial request
        xlog("for $rs response the value of AVP \"state_test_var\" is $avp(state_test_var) ");

        #Append a header so we can see this was proxied in the SIP capture
        append_hf("X-Proxied: For the reply\r\n");

}

Any responses from the route[RELAY] routing block will go to onreply_route[OurReplyRoute], the beauty of this is it allows you to have multiple reply routes each with their own logic. For example for a call leg to a carrier you may want to preserve CLI, but for a call leg to a customer you may wish to restrict it if that’s the option the user has selected, and you can make these changes / modifications in the reply messages.

Failure Routes

Failure routes allow the transaction module to know to try again if a call fails, for example if no response is received from the destination, send it to a different destination, like a backup.

route[RELAY]{

        #Use reply route "OurReplyRoute" for responses for this transaction
        t_on_reply("OurReplyRoute");
        t_on_failure("OurFailureRoute");
        #Relay (aka Forward) the request
        t_relay_to_udp("192.168.1.118", "5060");

}

failure_route[OurFailureRoute]{
        xlog("At failure route");
        t_reply("500", "Remote end never got back to us");
        exit;
}

We can build upon this, and try a different destination if the first one fails:

request_route {

        #Enable record_routing so we see the BYE / Re-INVITE etc
        record_route();

        #Handle Registrations in a dumb way so they don't messy our tests
        if(is_method("REGISTER")){
                sl_reply("200", "ok");
                exit;
        }



                 #Append a header so we can see this was proxied in the SIP capture
                append_hf("X-Proxied: You betcha\r\n");

        if(is_method("INVITE")){
                        #Createa  new AVP called "state_test_var" and set the value to "I remember"
                        $avp(state_test_var) = "I remember";
        }
                #Let syslog know we've set the value and check it
                xlog("for $rm the value of AVP \"state_test_var\" is $avp(state_test_var) ");

                #Send to route[RELAY] routing block
                rewritehostport("nonexistentdomain.com");
                route(RELAY);

}

route[RELAY]{

        #Use reply route "OurReplyRoute" for responses for this transaction
        t_on_reply("OurReplyRoute");
        t_on_failure("OurFailureRoute");
        #Relay (aka Forward) the request
        t_relay();
}

failure_route[OurFailureRoute]{
        xlog("At failure route");
        #t_reply("500", "Remote end never got back to us");

                rewritehostport("192.168.3.118");
                append_branch();
                t_relay();

}

onreply_route[OurReplyRoute] {
        #On replies from route[RELAY]

        #Check our AVP we set in the initial request
        xlog("for $rs response the value of AVP \"state_test_var\" is $avp(state_test_var) ");

        #Append a header so we can see this was proxied in the SIP capture
        append_hf("X-Proxied: For the reply\r\n");

}

One thing to keep in mind is that there’s lots of definitions of failure, for example if you are sending a call to a carrier and get a 404 response back, you probably want to relay that through to the end user, because that destination isn’t there.

But if you get back a 5xx series response you may consider that to be a failure and select the next carrier for example.

Different conditions / requirements have different definitions of “failures” and so there’s a lot to think about when implementing this, along with timeouts for no replies, TCP session management, etc.

Parallel Forking the Call to Multiple Destinations

Parallel Forking is a fancy way of saying ring multiple destinations at the same time.

/* Main SIP request routing logic
 * - processing of any incoming SIP request starts with this route
 * - note: this is the same as route { ... } */
request_route {

        #Enable record_routing so we see the BYE / Re-INVITE etc
        record_route();

        #Handle Registrations in a dumb way so they don't messy our tests
        if(is_method("REGISTER")){
                sl_reply("200", "ok");
                exit;
        }



                 #Append a header so we can see this was proxied in the SIP capture
                append_hf("X-Proxied: You betcha\r\n");

        if(is_method("INVITE")){
                        #Createa  new AVP called "state_test_var" and set the value to "I remember"
                        $avp(state_test_var) = "I remember";
        }
                #Let syslog know we've set the value and check it
                xlog("for $rm the value of AVP \"state_test_var\" is $avp(state_test_var) ");

                #Send to route[RELAY] routing block
                route(RELAY);

}

route[RELAY]{

        #Use reply route "OurReplyRoute" for responses for this transaction
        t_on_reply("OurReplyRoute");

        #Append branches for each destination we want to forward to
        append_branch("sip:[email protected]");
        append_branch("sip:[email protected]");
        append_branch("sip:[email protected]");

        t_on_failure("OurFailureRoute");
        #Relay (aka Forward) the request
        t_relay();
}

failure_route[OurFailureRoute]{
        xlog("At failure route");
        t_reply("500", "All those destinations failed us");

}

onreply_route[OurReplyRoute] {
        #On replies from route[RELAY]

        #Check our AVP we set in the initial request
        xlog("for $rs response the value of AVP \"state_test_var\" is $avp(state_test_var) ");

        #Append a header so we can see this was proxied in the SIP capture
        append_hf("X-Proxied: For the reply\r\n");

}

Bit of a mess but here we see the initial INVITE being branched to the 3 destinations at the same time (Parallel forking)

Serial Forking / Sequential Forking the calls to Multiple Destinations one after the Other

This could be used to try a series of weighted destinations and only try the next if the preceding one fails:

/* Main SIP request routing logic
 * - processing of any incoming SIP request starts with this route
 * - note: this is the same as route { ... } */
request_route {

        #Enable record_routing so we see the BYE / Re-INVITE etc
        record_route();


        #Send to route[RELAY] routing block
        route(RELAY);

}

route[RELAY]{

        #Use reply route "OurReplyRoute" for responses for this transaction
        t_on_reply("OurReplyRoute");

        append_branch("sip:[email protected]", "0.3");
        append_branch("sip:[email protected]", "0.2");
        append_branch("sip:[email protected]", "0.1");

        t_load_contacts();

        t_next_contacts();

        t_on_failure("OurFailureRoute");
        #Relay (aka Forward) the request
        t_relay();
        break;
}

failure_route[OurFailureRoute]{

        xlog("At failure route - Trying next destination");
        t_on_failure("OurFailureRoute");
        t_relay();


}

onreply_route[OurReplyRoute] {
        #On replies from route[RELAY]
        #Append a header so we can see this was proxied in the SIP capture
        append_hf("X-Proxied: For the reply\r\n");

}

Again this will try each destination, but one after the other based on the weight we added to each destination in the append_branch()

Here we see each destination being tried sequentially

Transaction Stateful Proxy with Kamailio

We covered the 3 different types of SIP Proxy, Stateless, Transaction Stateful and Dialog Stateful.

It’s probably worth going back to have a read over the description of the types of proxy and have a read over the whole Stateless proxy we implemented in Kamailio, before we get started on Stateful proxies, because we’ll be carrying on from what we started there.

The Setup

The 3 different proxies all do the same thing, they all relay SIP messages, so we need a way to determine what state has been saved.

To do this we’ll create a variable (actually an AVP) in the initial request (in our example it’ll be an INVITE), and we’ll reference it when handling a response to make sure we’ve got transactional state.

We’ll also try and reference it in the BYE message, which will fail, as we’re only creating a Transaction Stateful proxy, and the BYE isn’t part of the transaction, but in order to see the BYE we’ll need to enable Record Routing.

Stateless Proof

Before we add any state, let’s create a working stateless proxy, and add see how it doesn’t remember:

####### Routing Logic ########


/* Main SIP request routing logic
 * - processing of any incoming SIP request starts with this route
 * - note: this is the same as route { ... } */
request_route {

        #Enable record_routing so we see the BYE / Re-INVITE etc
        record_route();

        #Handle Registrations in a dumb way so they don't messy our tests
        if(is_method("REGISTER")){
                sl_reply("200", "ok");
                exit;
        }



                 #Append a header so we can see this was proxied in the SIP capture
                append_hf("X-Proxied: You betcha\r\n");

        if(is_method("INVITE")){
                        #Createa  new AVP called "state_test_var" and set the value to "I remember"
                        $avp(state_test_var) = "I remember";
        }
                #Let syslog know we've set the value and check it
                xlog("for $rm the value of AVP \"state_test_var\" is $avp(state_test_var) ");

                #Forard to new IP
                forward("192.168.3.118");



}

onreply_route{
        #Check our AVP we set in the initial request
        xlog("for $rs response the value of AVP \"state_test_var\" is $avp(state_test_var) ");

        #Append a header so we can see this was proxied in the SIP capture
        append_hf("X-Proxied: For the reply\r\n");
}

Now when we run this and call from any phone other than 192.168.3.118, the SIP INVITE will hit the Proxy, and be forwarded to 192.168.3.118.

Syslog will show the INVITE and us setting the var, but for the replies, the value of AVP $avp(state_test_var) won’t be set, as it’s stateless.

Let’s take a look:

kamailio[2577]: {1 1 INVITE [email protected]} ERROR: : for INVITE the value of AVP "state_test_var" is I remember
kamailio[2575]: {2 1 INVITE [email protected]} ERROR: <script>: for 100 response the value of AVP "state_test_var" is <null>
kamailio[2576]: {2 1 INVITE [email protected]} ERROR: <script>: for 180 response the value of AVP "state_test_var" is <null>
kamailio[2579]: {2 1 INVITE [email protected]} ERROR: <script>: for 200 response the value of AVP "state_test_var" is <null>
kamailio[2580]: {1 1 ACK [email protected]} ERROR: <script>: for ACK the value of AVP "state_test_var" is <null>
kamailio[2581]: {1 2 BYE [email protected]} ERROR: <script>: for BYE the value of AVP "state_test_var" is <null>

We can see after the initial INVITE none of the subsequent replies knew the value of our $avp(state_test_var), so we know the proxy is at this stage – Stateless.

I’ve put a copy of this code on GitHub for you to replicate yourself.

Adding State

Doing the heavy lifting of our state management is the Transaction Module (aka TM). The Transaction Module deserves a post of it’s own (and it’ll get one).

We’ll load the TM module (loadmodule “tm.so”) and use the t_relay() function instead of the forward() function.

But we’ll need to do a bit of setup around this, we’ll need to create a new route block to call t_relay() from (It’s finicky as to where it can be called from), and we’ll need to create a new reply_route{} to manage the response for this particular dialog.

Let’s take a look at the code:

####### Routing Logic ########


/* Main SIP request routing logic
 * - processing of any incoming SIP request starts with this route
 * - note: this is the same as route { ... } */
request_route {

        #Enable record_routing so we see the BYE / Re-INVITE etc
        record_route();

        #Handle Registrations in a dumb way so they don't messy our tests
        if(is_method("REGISTER")){
                sl_reply("200", "ok");
                exit;
        }



                 #Append a header so we can see this was proxied in the SIP capture
                append_hf("X-Proxied: You betcha\r\n");

        if(is_method("INVITE")){
                        #Createa  new AVP called "state_test_var" and set the value to "I remember"
                        $avp(state_test_var) = "I remember";
        }
                #Let syslog know we've set the value and check it
                xlog("for $rm the value of AVP \"state_test_var\" is $avp(state_test_var) ");

                #Send to route[RELAY] routing block
                route(RELAY);

}

route[RELAY]{

        #Use reply route "OurReplyRoute" for responses for this transaction
        t_on_reply("OurReplyRoute");

        #Relay (aka Forward) the request
        t_relay_to_udp("192.168.3.118", "5060");

}

onreply_route[OurReplyRoute] {
        #On replies from route[RELAY]

        #Check our AVP we set in the initial request
        xlog("for $rs response the value of AVP \"state_test_var\" is $avp(state_test_var) ");

        #Append a header so we can see this was proxied in the SIP capture
        append_hf("X-Proxied: For the reply\r\n");

}

So unlike before where we just called forward(); to forward the traffic we’re now calling in a routing block called RELAY.

Inside route[RELAY] we set the routing block that will be used to manage replies for this particular transaction, and then call t_relay_to_udp() to relay the request.

We renamed our onreply_route to onreply_route[OurReplyRoute], as specified in the route[RELAY].

So now let’s make a call (INVITE) and see how it looks in the log:

kamailio[5008]: {1 1 INVITE [email protected]} ERROR: : for INVITE the value of AVP "state_test_var" is I remember
kamailio[5005]: {2 1 INVITE [email protected]} ERROR: <script>: for 100 response the value of AVP "state_test_var" is I remember
kamailio[5009]: {2 1 INVITE [email protected]} ERROR: <script>: for 180 response the value of AVP "state_test_var" is I remember
kamailio[5011]: {2 1 INVITE [email protected]} ERROR: <script>: for 200 response the value of AVP "state_test_var" is I remember
kamailio[5010]: {1 1 ACK [email protected]} ERROR: <script>: for ACK the value of AVP "state_test_var" is <null>
kamailio[5004]: {1 2 BYE [email protected]} ERROR: <script>: for BYE the value of AVP "state_test_var" is <null>
kamailio[5007]: {2 2 BYE [email protected]} ERROR: <script>: for 200 response the value of AVP "state_test_var" is <null>

Here we can see for the INVITE, the 100 TRYING, 180 RINGING and 200 OK responses, state was maintained as the variable we set in the INVITE we were able to reference again.

(The subsequent BYE didn’t get state maintained because it’s not part of the transaction.)

And that’s it.

Here’s a copy of my running code on GitHub.

Hopefully now you’ve got an idea of the basics of how to implement a transaction stateful application in Kamailio.