Tag Archives: DNS

DNS’ role in S8-Home Routing Roaming

S8 Home Routing is a really simple concept, the traffic goes from the SGW in the visited PLMN to the PGW in the home PLMN, so the PCRF, OCS/OFCS, IMS, IP Addresses, etc, etc, are all in the home network, and this avoids huge amounts of complexity.

But in order for this to work, the visited network MME needs to find the PGW of the home network, and with over 700 roaming networks in commercial use, each one with potentially hundreds of unique APNs each routing to a different PGW, this is a tricky proposition.

If you’ve configured your PGW peers statically on your MME, that’s fine, but it doesn’t scale very well – And if you add an MVNO who wants their own PGW for serving their APN, well you’ll be adding some complexity there to, so what to do?

Well, the answer is DNS.

By taking the APN to be served, the home PLMN and the interface type desired, with some funky DNS queries, our MME can determine which PGW should be selected for a request.

Let’s take a look, for a UE from MNC XXX MCC YYY roaming into our network, trying to access the “IMS” APN.

Our MME knows the network code of the roaming subscriber from the IMSI is MNC XXX, MCC YYY, and that the UE is requesting the IMS APN.

So our MME crafts a DNS request for the NAPTR query for ims.apn.epc.mncXXX.mccYYY.3gppnetwork.org:

Because the domain is epc.mncXXX.mccYYY.3gppnetwork.org it’s routed to the authoritative DNS server in the home network, which sends back the response:

We’ve got a few peers to pick from, so we need to filter this list of Answers to only those that are relevant to us.

First we filter by the Service tag, whihc for each listed peer shows what services that peer supports.

But since we’re looking for S8, we need to find a peer who’s “Service” tag string contains:


We’re looking for two bits of info here, the presence of x-3gpp-pgw in the Service to indicate that this peer is a PGW and x-s8-gtp to indicate that this peer supports the S8 interface.

A service string like this:


Would be excluded as it only supports S5 not S8 (Even though they are largely the same interface, S8 is used in roaming).

It’s also not uncommon to see both services indicated as supported, in which case that peer could be selected too:


(The answers in the screenshot include :x-gp which means the PGWs advertised are also co-located with a GGSN)

So with our answers whittled down to only those that meet our needs, we next use the Order and the Preference to pick our best candidate, this is the same as regular DNS selection logic.

From our candidate, we’ve also got the Regex Replacement, which allows our original DNS request to be re-written, which allows us to point at a single peer.

In our answer, we see the original request ims.apn.epc.mncXXX.mccYYY.3gppnetwork.org is to be re-written to topon.lb1.pgw01.epc.mncXXX.mccYYY.3gppnetwork.org.

This is the FQDN of the PGW we should use.

Now we know the FQND we should use, we just do an A-Record lookup (Or AAAA record lookup if it is IPv6) for that peer we are targeting, to turn that FQDN into an IP address we can use.

And then in comes the response:

So now our MME knows the IP of the PGW, it can craft a Create Session request where the F-TEID for the S8 interface has the PGW IP set on it that we selected.

For more info on this TS 129.303 (Domain Name System Procedures) is the definitive doc, but the GSMA’s IR.88 “LTE and EPC Roaming Guidelines” provides a handy reference.


Ask someone with headphones and a lanyard in the halls of a datacenter what transport does DNS use, there’s a good chance the answer you’d get back is UDP Port 53.

But not always!

In scenarios where the DNS response is large (beyond 512 bytes) a DNS query will shift over to TCP for delivery.

How does the client know when to shift the request to TCP – After all, the DNS server knows how big the response is, but the client doesn’t.

The answer is the Truncated flag, in the response.

The DNS server sends back a response, but with the Truncated bit set, as per RFC 1035:

TC TrunCation – specifies that this message was truncated due to length greater than that permitted on the transmission channel.

RFC 1035

Here’s an example of the truncated bit being set in the DNS response.

The DNS client, upon receiving a response with the truncated bit set, should run the query again, this time using TCP for the transport.

One prime example of this is DNS NAPTR records used for DNS in roaming scenarios, where the response can quite often be quite large.

If it didn’t move these responses to TCP, you’d run the risk of MTU mismatches dropping DNS. In that half of my life has been spent debugging DNS issues, and the other half of my life debugging MTU issues, if I had MTU and DNS issues together, I’d be looking for a career change…

Kamailio I-CSCF – SRV Lookup Behaviour

Recently I had a strange issue I thought I’d share.

Using Kamailio as an Interrogating-CSCF, Kamailio was getting the S-CSCF details from the User-Authorization-Answer’s “Server-Name” (602) AVP.

The value was set to:


But the I-CSCF was only looking up A-Records for scscf.mnc001.mcc001.3gppnetwork.org, not using DNS-SRV.

The problem? The Server-Name I had configured as a full SIP URI in PyHSS including the port, meant that Kamailio only looks up the A-Record, and did not do a DNS-SRV lookup for the domain.

Dropping the port number saw all those delicious SRV records being queried.

Something to keep in mind if you use S-CSCF pooling with a Kamailio based I-CSCF, if you want to use SRV records for load balancing / traffic sharing, don’t include the port, and if instead you want it to go to the specified host found by an A-record, include the port.

IMS DNS Failing

Kamailio, IMS & DNS Headches

I’m sure I’ve ranted about the importance of DNS in IMS networks in the past on here already.

Recently I was rebuilding a P-CSCF and kept getting an error saying that the DNS was failing to resolve:

 4(5993) CRITICAL: <core> [core/dns_cache.c:3136]: dns_srv_sip_resolve(): unknown proto 0
 4(5993) ERROR: tm [ut.h:284]: uri2dst2(): failed to resolve "ims.mnc001.mcc001.3gppnetwork.org" :bug - critical error (-13)
 4(5993) ERROR: tm [t_fwd.c:1759]: t_forward_nonack(): failure to add branches
 4(5993) ERROR: sl [sl_funcs.c:414]: sl_reply_error(): stateless error reply used: Unresolvable destination (478/SL)

This was a rebuild, another P-CSCF was running fine and handling traffic with the same DNS server set.

I checked the netplan config and confirmed the DNS server was set correctly.

If I did an nslookup on the address that was failing to resolve – pointing it at the correct DNS server, the A & SRV records came back OK, and everything was fine.

Stranger still, after clearing the DNS Cache, and running a packet capture, I couldn’t see any DNS queries at all….

The problem? Kamailio uses resolv.conf by default on Ubuntu Server, and that was pointing to localhost.

After updating resolv.conf to point to the DNS server handling the IMS domains, I was good to go again.

A super valuable resource for all things DNS & Kamailio is this doc.

ENUM in Practice with Kamailio

In our last post we covered the theory behind ENUM and its use, and in this post we’ll cover setting up Kamailio to query an ENUM server.

Before we start, if you’re not familiar with ENUM, check out my primer on the topic here, and then for more in-depth info check out this post on configuring an ENUM server in Bind and the ways records can be configured,

So once we’ve got an ENUM server configured and confirmed we can query it and get the results we want using Dig, we can configure Kamailio.

But before we get to the Kamailio side, a word on how Kamailio handles DNS,
Kamailio doesn’t have the ability to set a DNS server, instead it uses the system DNS server details,
This means your system will need to use the DNS server we want to query for ENUM for all DNS traffic, not just for Kamailio. This means you may need to setup Recursion to still be able to query DNS records for the outside world.

To add support to Kamailio, we’ll need to load the enum module (enum.so),

In terms of parameters, all we’ll set is the doman_suffix, which is, as it sounds, the domain suffix used in the DNS queries. If you’re using a different domain for your ENUM it’d need to be reflected here.

 modparam("enum", "domain_suffix", "e164.arpa.")

Next up inside our minimalist dialplan we’ll just add enum_query(); to query the SIP URI,

         xlog("Ran ENUM query");
         xlog("To URI $tU");

Obviously in production you’d want to add more sanity checks and error handling, but with this, sending a SIP INVITE to Kamailio with an E.164 number in the SIP URI user part, will lead to an ENUM query resolving this, and routing the traffic to it,

An example PCAP above, showing a call to +61355500912, the resulting ENUM query and routing to server1.enum.nickvsnetworking.com,

By using Kamailio’s transaction module ™ as a stateful proxy, we can run queries again if one were to fail,

Copy of example config is available here,

Docker & BIND as an ENUM Playground

In the last we covered what ENUM is and how it works, so to take this into a more practical example, I thought I’d share the details of the ENUM server I’ve setup in my lab, and the Docker container I’ve bundled it into.

Inside the Docker container we’ll be running Bind – this post won’t teach you much about Bind, there’s already lots of good information on it elsewhere, but we will cover the parameters involved in setting up ENUM records (NAPTR) for E.164 addresses.

Getting the Environment up and Running

First we’ll need to setup our environment, I’ve published the images for the container to Dockerhub, but we’ll build it from the Dockerfile so you can edit the files and rebuild as you play around:

git clone https://github.com/nickvsnetworking/ENUM_Playground
cd ENUM_Playground
docker build --pull --rm -f "Dockerfile" -t enum:latest "."

systemd-resolve on Ubuntu binds to port 53 by default, which can lead to some headaches, so we’ll create a new network in Docker for this to run in, so it doesn’t conflict with anything else you may be running:

sudo docker network create --subnet= enum_playground

And now we’ll run the ENUM container in the enum_playground network and with the IP,

docker run -d --rm --name=enum --net=enum_playground --ip= enum

Ok, that’s the environment setup, let’s run some queries!

E.164 to SIP URI Resolution with ENUM

In our last post we covered the basics of formatting an E.164 number and querying a DNS server to get it’s call routing information.

Again we’re going to use Dig to query this information. In reality ENUM queries would be run by an endpoint, or software like FreeSWITCH or Kamailio (Spoiler alert, posts on ENUM handling in those coming later), but as we’re just playing Dig will work fine.

So let’s start by querying a single E.164 address, +61355500911

First we’ll reverse it and put full stops / periods between the numbers, to get

Next we’ll add the e164.arpa prefix, which is the global prefix for ENUM addresses, and presto, that’s what we’ll query –

Lastly we’ll feed this into a Dig query against the IP of our container and of type NAPTR,

dig @ -t naptr

So what did you get back?

Well, if everything is working your output should look something like the output I’ve got below,

NAPTR results for queried ENUM Address

So how do we interpret this? Well let’s break it down,

The first part is the domain we queried, simple enough in this case, 3600 IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

Next up is the TTL or expiry, in this case it’s 3600 seconds (1 hour), shorter periods allow for changes to propagate / be reflected more quickly but at the expense of more load as results can’t be cached for as long. The class (IN) represents Internet, which is the only class commonly used, even on internal systems. 3600 IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

Then we have the type of record returned, in our case it’s a NAPTR record, 3600 IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

After that is the Order, this defines the order in which the rules are to be parsed. Lower numbers are processed first, if no matches then the next lowest, and so on until the highest number is reached, we’ll touch on this in more detail later in this post, 3600 IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

The Pref is the processing preference. This is very handy for load balancing, as we can split traffic between hosts with different preferences. We’ll cover this later in this post too. 3600 IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

The Flags represent the type of record we’re going to get, for most ENUM traffic this is going to be set to U, to denote a SIP URI with Regex, while the Service value we’ll be looking for will be “E2U+sip” service to identify SIP URIs to route calls to, but could be other values like Email addresses, IM Addresses or PSTN numbers, to be parsed by other applications. 3600 IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

Lastly we’ve got the Regex part. Again not going to cover Regex as a whole, just the DNS particulars.

Everything between the first and second ! denotes what we’re searching for, while everything from the second ! to the last ! denotes what we replace it with.

In the below example that means we’re matching ^.* which means starting with (^) any character (.) zero or more times (*), which gets replaced with sip:[email protected], 3600 IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

How should this be treated?

For the first example, a call to the E.164 address of 61355500912 will be first formatted into a domain as per the ENUM requirements ( and then queried as a NAPTR record against the DNS server, 3600 IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

Only a single record has been returned so we don’t need to worry about the Order or Preference, and the Regex matches anything and replaces it with the resulting SIP URI of sip:[email protected], which is where we’ll send our INVITE.

Under the Hood

Inside the Repo we cloned earlier, if you open the e164.arpa.db file, things will look somewhat familiar,

The record we just queried is the first example in the Bind config file,

; E.164 Address +61355500911 - Simple no replacement (Resolves all traffic to sip:[email protected]) IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

The config file is just the domain, class, type, order, preference, flags, service and regex.

Astute readers may have noticed the trailing . which where we can put a replacement domain if Regex is not used, but it cannot be used in conjunction with Regex, so for all our work it’ll just be a single trailing . on each line.

You can (and probably should) change the values in the e164.arpa.db file as we go along to try everything out, you’ll just need to rebuild the container and restart it each time you make a change.

This post is going to focus on Bind, but the majority of modern DNS servers support NAPTR records, so you can use them for ENUM as well, for example I manage the DNS for this site thorough Cloudflare, and I’ve put a screenshot below of an example private ENUM address I’ve added into it.

Setting up a NAPTR record in Cloudflare DNS

Preference to Split Traffic between Servers

So with a firm understanding of a single record being returned, let’s look at how we can use ENUM to cleverly route traffic to multiple hosts.

If we have a pool of servers we may wish to evenly distribute all traffic across them, so that’s how E.164 address +61355500912 is setup – to route traffic evenly (50/50) across two servers.

Querying it with Dig provides the following result:

dig @ -t naptr
;; ANSWER SECTION: 3600 IN NAPTR  10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" . 3600 IN NAPTR  10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

So as the order value (10) is the same for both records, we can ignore it – there isn’t one value lower than the other.

We can see both records have a preference of 100, in practice, this means they each get 50% of the traffic. The formula for traffic distribution is pretty simple, each server gets the value of it’s preference, divided by the total of all the preferences,

So for server1 it’s preference is 100 and the total of all the preferences combined is 200, so it gets 100/200, which is equivalent to one half aka 50%.

We might have a scenario where we have 3 servers, but one is significantly more powerful than the others, so let’s look at giving more traffic to one server and less to others, this example gets a little more complex but should cement your understanding of how the preference works;

dig @ -t naptr 3600 IN NAPTR  10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" . 3600 IN NAPTR  10 200 "u" "E2U+sip" "!^.*$!sip:[email protected]!" . 3600 IN NAPTR  10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

So now 3 servers, again none have a lower order than the other, it’s set to 10 for them all so we can ignore the order,

Next we can see the total of all the priority values is 400,

Server 2 has a priority of 100 so it gets 100/400 total priority, or a quarter of all traffic. Server 1 has the same value, so also gets a quarter of all traffic,

Server 3 however has a priority of 200 so it gets 200/400, or to simplify half of all traffic.

The Bind config for this is:

; E.164 Address +61355500913 - More complex load balance between 3 hosts (25% server1, 25% server2, 50% server3) IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" . IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" . IN NAPTR 10 200 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

Order for Failover

Primarily the purpose of the order is to enable wildcard routes (as we’ll see later) to be overwritten by more specific routes, but a secondary use in some implementations use Order as a way to list the preferences of the SIP URIs to route to. For example we could have two servers, one a primary and the other a standby, with the standby only to be used only if the primary SIP URI was not responding.

E.164 number +61355500914 is setup to return two SIP URIs,

dig @ -t naptr
;; ANSWER SECTION: 3600 IN NAPTR  10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" . 3600 IN NAPTR  20 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

Our DNS client will first use the SIP URI sip:[email protected] as it has the lower order value (10), and if that fails, can try the entry with the next lowest order-value (20) which would be sip:[email protected].

The Bind config for this is:

; E.164 Address +61355500914 - Order example returning multiple SIP URIs to try for failover IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" . IN NAPTR 20 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .


If we have a 1,000 number block, having to add 1000 individual records can be very tedious. Instead we can use wildcard matching (thanks to the fact we’ve reversed the E.164 address) to match ranges. For example if we have E.164 numbers from +61255501000 to +61255501999 we can add a wildcard entry to match the +61255501x prefix,

I’ve set this up already so let’s lookup the E.164 number +6125501234,

dig @ -t naptr
;; ANSWER SECTION: 3600 IN NAPTR  50 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

If you look up any other number starting with +6125501 you’ll get the same result, and here’s the Bind config for it:

; Wildcard E.164 Address +61255501* - Wildcard example for all destinations starting with E.164 prefix +61255501x to single destination (sip:[email protected])
; For example E.164 number +6125501234 will resolve to sip:[email protected]
*. IN NAPTR 100 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

The catch with this is they’re all pointing at the same SIP URI, so we can’t treat the calls differently based on the called number – This is where the Regex magic comes in.

We can use group matching to match a group and fill it in the dialed number into the SIP Request URI, for example:

!(^.*$)!sip:+1\[email protected]!

Will match the E.164 number requested and put it inside sip:[email protected]

The +61255502xxx prefix is setup for this, so if we query +61255502000 (or any other number between +61255502000 and +61255502999) we’ll get the regex query in the resulting record.

Keep in mind DNS doesn’t actually apply the Regex transformation, just shares it, and the client applies the transformation.

dig @ -t naptr
;; ANSWER SECTION: 3600 IN NAPTR  100 100 "u" "E2U+sip" "!(^.*$)!sip:+1\[email protected]!" .

And the corresponding Bind config:

; Wildcard example for all destinations starting with E.164 prefix +61255502x to regex filled destination
; For example a request to 61255502000 will return sip:[email protected])
*. IN NAPTR 100 100 "u" "E2U+sip" "!(^.*$)!sip:+1\\[email protected]!" .

One last thing to keep in mind, is that Wildcard priorities are of any length.
This means +612555021 would match as well as +6125550299999999999999. Typically terminating switches drop any superfluous digits, and NU those that are too short, but keep this in mind, that length is not taken into account.

Wildcard Priorities

So with our wildcards in place, what if we wanted to add an exception, for example one number in our 61255502xxx block of numbers gets ported to another carrier and needs to be routed elsewhere?

Easy, we just add another entry for that number being more specific and with a lower order than the wildcard, which is what’s setup for E.164 number +61255502345,

dig @ -t naptr
;; ANSWER SECTION: 3600 IN NAPTR  50 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

Which does not return the same result as the others that match the wildcard,

Bind config:

; Wildcard example for all destinations starting with E.164 prefix +61255502x to regex filled destination
; For example a request to +61255502000 will return sip:[email protected])
*. IN NAPTR 100 100 "u" "E2U+sip" "!(^.*$)!sip:+1\\[email protected]!" .

; More specific example with lower order than +6125550x wildcard for E.164 address +61255502345 will return sip:[email protected] IN NAPTR 50 100 "u" "E2U+sip" "!^.*$!sip:[email protected]!" .

We can combine all of the tricks we’ve covered here, from statically defined entries, wildcards, regex replacement, multiple entries with multiple orders and preferences, to create really complex routing, using only DNS.

Summary & Next Steps

So by now hopefully you’ve got a fair understanding of how NAPTR and DNS work together to translate E.164 addresses into SIP URIs,

Of course being able to do this manually with Dig and comprehend how it’ll route is only one part of the picture, in the next posts we’ll cover using Kamailio and FreeSWITCH to query ENUM routing information and route traffic to it,

ENUM – DNS based Call Routing

DNS is commonly used for resolving domain names to IP Addresses, and is often described as being like “the phone book of the Internet”.

So what’s the phone book of phone books?

The answer, is (kind of) DNS. With the aid of E.164 number to URI mapping (ENUM), DNS can be used to resolve phone numbers into SIP URIs to route the traffic to.

So what is ENUM?

ENUM allows us to bypass the need for a central switch for routing calls to numbers, and instead, through a DNS lookup, resolve a phone number into a reachable SIP URI that is the ultimate destination for the traffic.

Imagine you want to call a company, you dial the phone number for that company, your phone does a DNS query against the phone number, which returns the SIP URI of the company’s PBX, and your phone sends the SIP INVITE directly to the company’s PBX, with no intermediary party carrying the call.

3GPP have specified ENUM as the prefered mechanism for resolving phone numbers into SIP addresses, and while it’s widespread adoption on the public Internet is still in its early days (See my post on The Sad story of ENUM in Australia) it is increasingly common in IMS networks and inside operator networks.

IETF defined RFC 6116 for “The E.164 to Uniform Resource Identifiers (URI) Dynamic Delegation Discovery System (DDDS) Application (ENUM)”, which defines how the system works.

So how does ENUM actually work?

ENUM allow us to lookup a phone number on a DNS server and find the SIP URI a server that will handle traffic for the phone number, but it’s a bit more complicated than the A or AAAA records you’d use to resolve a website, ENUM relies on NAPTR records.

Let’s look at the steps involved in taking an E.164 number and knowing where to send it.

Step 1 – Reverse the Numbers

We read phone numbers from left to right.

This is because historically the switch needs to get all the long-distance routing sorted first. The switch has to route your call to the exchange that serves that subscriber, which is what all the area codes and prefixes assigned to areas are all about (Throwback to SZU for any old Telco buffs).

For an E.164 number you’ve got a Country Code, Area Code and then the Subscriber Number. The number gets more specific as it goes along.

But getting more specific as you go along is the opposite how how DNS works, millions of domains share the .com suffix, and the unique / specific part is the bits before that.

So the first step in the ENUM process is to reverse the phone number, so let’s take phone number (03) 5550 0912, which in E.164 is +61 3 5550 0912.

As the spaces in the phone numbers are there for the humans, we’ll drop all of them and reverse the number, as DNS is more specific right-to-left, so we end up with

Step 2 – Add the Suffix

The ITU ENUM specifies the suffix e164.arpa be assigned for public ENUM entries. Private ENUM deployments may use their own suffix, but to make life simple I’m going to use e164.arpa as if it were public.

So we’ll append the e164.arpa domain onto our reversed and formatted E.164 phone number:

Step 3 – Query it

Next we’ll run a Naming Authority Pointer (NAPTR) query against the domain, to get back a list of records for that number.

DNS is a big topic, and NAPTR and SRV takes up a good chunk of it, but what you need to know is that by using NAPTR we’re not limited to just a single response, we could have a weighted pool of servers handling traffic for this phone number, and be able to control load through the use of NAPTR, amongst other things.

Of course, if our phone can query the public NAPTR records, then so can anyone else, so we can just use a tool like Dig to query the record ourselves,

dig @ -t naptr

In the answers section I’ve setup this DNS server to only return a single response, with the regex SIP URI to use, in my case that’s sip:[email protected]

You’ll obviously need to replace the DNS server with your DNS server, and the query with the reversed and formatted version of the E.164 number you wish to query.

Step 4 – Send SIP traffic

After looking at the NAPTR records returned and using the weight and priority to determine which server/s to send to first, our phone forwards an INVITE to the URI returned in the NAPTR record.

How to interpret the returned results?

The first thing to keep in mind when working with ENUM is multiple records being returned is supported, and even encouraged.

NAPTR results return 7 fields, which define how it should be handled.

The host part is fairly obvious, and defines the host / DNS entry we’re talking about.

The Service defines what type of service this is. ENUM can be expanded beyond just voice, for example you may want to also return an email address or IM address as well as a SIP Address on an ENUM query, which you can do. By default voice uses the “E2U+sip” service to identify SIP URIs to route calls to, so in this context that’s what we’re interested in, but keep in mind there are other types out there,

Example ENUM query against a phone number showing other types of services (Email & Web)

The Order simply defines the order in which the rules are to be parsed. Lower numbers are processed first, if no matches then the next lowest, and so on until the highest number is reached.

The Pref is the processing preference. For load balancing 50/50 between two sites say a Melbourne and Sydney site, we’d return two results, with the same Order, and the same Pref, would see traffic split 50/50 between the two sites.
We could split this further, a Pref value of 10 for Melbourne, 10 for Sydney, 5 for Brisbane and 5 for Perth would see 33% of calls route to Melbourne, 33% of calls route to Sydney, 16.5% of calls route to Brisbane and 16.5% of calls route to Perth.
This is because we’d have a total preference value of 30, and the individual preference for each entry would work out as the fraction of the total (ie Pref 10 out of 30 = 10/30 or 33.3%).

The Flags denote the type of record we’re going to get, for most ENUM traffic this is going to be set to U, to denote a SIP URI with Regex.

The regexp field contains our SIP URI in the form of a Regular expression, which can include pattern matching and replacement. This is most commonly used to fill in the phone number into the SIP URI, for example instead of hardcoding the phone number into the response, we could use a Regular expression to fill in the requested number into the SIP URI.

!(^.*$)!sip:+1\[email protected]!

ENUM sounds great, how do I get it?

Here’s the tricky part.

If you’re looking to implement ENUM for an internal network, great, I’ll have some more posts here over the next few weeks covering off configuration of a DNS server to support ENUM lookups, and using Kamailio to lookup ENUM routes.

In terms of public ENUM, while many carriers are using ENUM inside their networks, public adoption of ENUM in most markets has been slow, for a number of reasons.

Many incumbent operators have been reluctant to embrace public ENUM as their role as an operator would be relegated to that of a Domain registrar.
Additionally, there’s real security risks involved in moving to ENUM – opening your phone system up to the world to accept inbound calls from anywhere. This could lead to DOS-style attacks of flooding phone numbers with automatically generated traffic, privacy risks and even less validation in terms of caller ID trust.

RIPE maintains the EnumData.org website listing the status of ENUM for each country / region.