Tag Archives: Charging

CGrateS – AttributeS

The docs describe AttributeS as a Key-Value-Store, but that’s probably selling it short – You can do some really cool stuff with AttributeS, and in this post, we’re going to learn about using AttributeS to transform stuff.

Note: Before we get started, I’d suggest copying this config file to use for testing.

Let’s look at a really basic example, where we add some data into AttributeS, match based on Account in CGrateS, and get back that data.

Let’s look at how this would look on the API:

{
    "method": "APIerSv2.SetAttributeProfile",
    "params": [{
        "Tenant": "cgrates.org",
        "ID": "ATTR_Nick_Key_Value_Example",
        "Contexts": ["*any"],
        "FilterIDs": [
            "*string:~*req.Account:1234"
        ],
        "Attributes": [
            {
            "FilterIDs": [],
            "Path": "*req.ExampleKey",
            "Type": "*constant",
            "Value": "ExampleValue"
            }
        ],
        "Blocker": False,
        "Weight": 10

    }],
}

So what are we doing in this API call?

Well, for starters we’re calling the SetAttributeProfile endpoint, this is where we go to create / update Attribute Profiles, but in this case, because we’re hitting it for the first time with this ID, we’re creating a new entry called “ATTR_Nick_Key_Value_Example“, this will match any Contexts (more on them later) where the FilterIDs is a string, where the request Account, is equal to 1234.

Let’s run this against the CGrateS API and take a look at the result:

import cgrateshttpapi
import pprint

CGRateS_Obj = cgrateshttpapi.CGRateS('localhost', 2080)

SetAttributeProfile = {
    "method": "APIerSv2.SetAttributeProfile",
    "params": [{
        "Tenant": "cgrates.org",
        "ID": "ATTR_Nick_Key_Value_Example",
        "Contexts": ["*any"],
        "FilterIDs": [
            "*string:~*req.Account:1234"
        ],
        "Attributes": [
            {
            "FilterIDs": [],
            "Path": "*req.ExampleKey",
            "Type": "*constant",
            "Value": "ExampleValue"
            }
        ],
        "Blocker": False,
        "Weight": 10
    }],
}
result = CGRateS_Obj.SendData(SetAttributeProfile)
pprint.pprint(result)

result = CGRateS_Obj.SendData({"method":"AttributeSv1.ProcessEvent",
                               "params":[
                                   {"Tenant":"cgrates.org",
                                    "Event":{"Account":"1234"},"APIOpts":{}}]})
pprint.pprint(result)

All going well you should have got the following back:

{'method': 'AttributeSv1.ProcessEvent', 'params': [{'Tenant': 'cgrates.org', 'Event': {'Account': '1234'}, 'APIOpts': {}}]}
{'error': None,
 'id': None,
 'result': {'APIOpts': {},
            'AlteredFields': ['*req.ExampleKey'],
            'Event': {'Account': '1234', 'ExampleKey': 'ExampleValue'},
            'ID': '',
            'MatchedProfiles': ['cgrates.org:ATTR_Nick_Key_Value_Example'],
            'Tenant': 'cgrates.org',
            'Time': None}}

This tells us we matched the Attribute with the ID ATTR_Nick_Key_Value_Example, and inside Event we can see that ExampleKey was added with value ExampleValue.

Okay, you’re saying, well what was the point of that?

Well, what if as a key in the attributes, we had the password for the SIP account, which we passed to our SIP switch (Kamailio, FreeSWITCH or Asterisk for example), and used that to authenticate?

Let’s see how that would look:

{
    "method": "APIerSv2.SetAttributeProfile",
    "params": [{
        "Tenant": "cgrates.org",
        "ID": "ATTR_Nick_Password_Example",
        "Contexts": ["*any"],
        "FilterIDs": [
            "*string:~*req.Account:1234"
        ],
        "Attributes": [
            {
            "FilterIDs": [],
            "Path": "*req.SIP_password",
            "Type": "*constant",
            "Value": "sosecretiputitonthewebsite"
            }
        ],
        "Blocker": False,
        "Weight": 10
    }],
}

Now if the CGrateS Agent for your SIP Switch, includes the *attributes flag, and the call is coming from 1234, we’ll get back a key called “SIP_password” with the value “sosecretiputitonthewebsite”, which you can use to auth the SIP account.

We can also return multiple AttributeS, for example, we created two Attributes (ATTR_Nick_Password_Example and ATTR_Nick_Key_Value_Example) which match on the account 1234. This means we’ll get back the SIP Password from ATTR_Nick_Password_Example and the key:value we set in ATTR_Nick_Key_Value_Example:

{'method': 'AttributeSv1.ProcessEvent', 'params': [{'Tenant': 'cgrates.org', 'Event': {'Account': '1234'}}]}
{'error': None,
 'id': None,
 'result': {'APIOpts': {},
            'AlteredFields': ['*req.SIP_password', '*req.ExampleKey'],
            'Event': {'Account': '1234',
                      'ExampleKey': 'ExampleValue',
                      'SIP_password': 'sosecretiputitonthewebsite'},
            'ID': '',
            'MatchedProfiles': ['cgrates.org:ATTR_Nick_Password_Example',
                                'cgrates.org:ATTR_Nick_Key_Value_Example'],
            'Tenant': 'cgrates.org',
            'Time': None}}

The order can be controlled by the Weight flag in the attribute, and if you want to stop matching any other AttributeS rules after the current Attribute, you can set the Blocker=True flag when you create/update the Attribute.

Okay, I hear you saying, that’s all well and good, I can add arbitrary key/values to stuff. Here endeth the lesson right?

Well not quite, because we can add key/values, but we can also rewrite variables using AttributeS.

Let’s imagine we’ve got 3 phone numbers (DIDs) associated with an account inside CGrateS, for example’s sake let’s say we have 12340001, 12340002 and 12340003, and we want any calls from these numbers to be billed to a CGrateS account called “NickTest1234”.

Our SIP switch doesn’t need to know anything about “NickTest1234”, just the 3 DIDs it can use to call out from your SIP stack. But to do this, we’d need CGrateS to transform any events from these DIDs to replace the Account value inside CGrateS, with NickTest1234.

Let’s see how that would look:

{'method': 'APIerSv2.SetAttributeProfile', 'params': [{'Tenant': 'cgrates.org', 'ID': 'ATTR_Calling_NickTest1234_12340001', 'Contexts': ['*any'], 'FilterIDs': ['*string:~*req.Account:12340001'], 'Attributes': [{'Path': '*req.Account', 'Type': '*constant', 'Value': 'NickTest1234'}], 'Weight': 0}], 'id': 1}

{'method': 'APIerSv2.SetAttributeProfile', 'params': [{'Tenant': 'cgrates.org', 'ID': 'ATTR_Calling_NickTest1234_12340002', 'Contexts': ['*any'], 'FilterIDs': ['*string:~*req.Account:12340002'], 'Attributes': [{'Path': '*req.Account', 'Type': '*constant', 'Value': 'NickTest1234'}], 'Weight': 0}], 'id': 2}

{'method': 'APIerSv2.SetAttributeProfile', 'params': [{'Tenant': 'cgrates.org', 'ID': 'ATTR_Calling_NickTest1234_12340003', 'Contexts': ['*any'], 'FilterIDs': ['*string:~*req.Account:12340003'], 'Attributes': [{'Path': '*req.Account', 'Type': '*constant', 'Value': 'NickTest1234'}], 'Weight': 0}], 'id': 3}

In the example code to go with this I’ve put together a simple for loop to add these – You can find the code on Github (link at the bottom).

So with these defined, let’s try and rate something, we’ll add a default Charger, and add an SMS balance, before simulating an SMS where the account is set to 12340003:

#Define default Charger
print(CGRateS_Obj.SendData({"method":"APIerSv1.SetChargerProfile","params":[{"Tenant":"cgrates.org","ID":"DEFAULT","FilterIDs":[],"AttributeIDs":["*none"],"Weight":0}]}))

#Add an SMS Balance
print(CGRateS_Obj.SendData({"method":"ApierV1.SetBalance","params":[{"Tenant":"cgrates.org","Account":"Nick_Test_123","BalanceType":"*sms","Categories":"*any","Balance":{"ID":"SMS_Balance_1","Value":"100","Weight":25}}],"id":13}))

import uuid
import datetime
now = datetime.datetime.now()
result = CGRateS_Obj.SendData({
    "method": "CDRsV2.ProcessExternalCDR",
    "params": [
        {
            "OriginID": str(uuid.uuid1()),
            "ToR": "*sms",
            "RequestType": "*pseudoprepaid",
            "AnswerTime": now.strftime("%Y-%m-%d %H:%M:%S"),
            "SetupTime": now.strftime("%Y-%m-%d %H:%M:%S"),
            "Tenant": "cgrates.org",
            #This is going to be transformed to Nick_Test_123 by Attributes
            "Account": "12340003",
            "Usage": "1",
        }
    ]
})
pprint.pprint(result)

Right, so all going well, here’s what you should see in the CDRs table:

Bing, despite the fact the Account in the ProcessExternalCDR was set to 12340003, and had no mention of “NickTest1234”, CGrateS transformed it to NickTest1234.

How did that happen? Well, inside our cgrates.json file we have set the cdrs and chargers modules to have a link to Attributes, which means that when we call CDRs or Chargers modules via the API, these will in turn bounce the data through AttributesS for any transformations.

This means we don’t need to run AttributeSv1.ProcessEvent ourselves, when we call CDRsV2.ProcessExternalCDR, the CDRs module will call AttributeSv1.ProcessEvent for us.

We can actually see this happening, using ngrep, which as you work more with CGrateS, is a tool you’ll get very familiar with, let’s take a peek:

sudo ngrep -t -W byline port 2012 -d lo

Now if we run the CDRsV2.ProcessExternalCDR again, we’ll see the CDRs module has called Attributes for us:

Boom, there it is, same as we ran, but it’s being handled by CGrateS for us.

If you look carefully you’ll see the context in the API request is set to “*cdrs”, this means the CDRs module is calling Attributes.

When we define each of our Attributes, as we did earlier in the post, we can set what contexts they are valid in, for example we may want to apply the transformation when called by CDRs, but not other modules, you can restrict that when you define the Attribute by setting “Contexts”: [“*cdrs”].

Okay, so we’ve done some account replacement, what else can we do?

Well, let’s look at some other use cases,

Here in Australia we’ve got a few valid dialing formats, you could dial E.164 format (Numbers look like: +61212341234), 0NSN format (Numbers look like: 02 1234 1234) or NSN format (Numbers look like: 1234 1234 assuming you’re in the 03 area code yourself).
If we want to define all our Destinations in E.164 format, we’ll need to to normalise the format using AttributeS, so the numbers always come as E.164.

Let’s give it a whirl with a static translation:

{
    "method": "APIerSv2.SetAttributeProfile",
    "params": [{
        "Tenant": "cgrates.org",
        "ID": "ATTR_0NSN_to_E164_Single",
        "Contexts": ["*any"],
        "FilterIDs": [
            "*string:~*req.Subject:0212341234"
        ],
        "Attributes": [
            {
            "FilterIDs": [],
            "Path": "*req.Subject",
            "Type": "*constant",
            "Value": "61212341234"
            }
        ],
        "Blocker": False,
        "Weight": 10
    }],
}

Now this will work, if we simulate an Event to AttributeS with the Subject 0212341234, it’ll get transformed by AttributeS to 61212341234.

The issue here is probably pretty obvious, the only matches one number, if we dial 0212341235 this all falls apart.

Enter our old friend Regex.

For starters, we’ll change the FilterIDs to match where the Account is NickTest7, this way we can set the rules on a per CGrateS account basis.

{
    "method": "APIerSv2.SetAttributeProfile",
    "params": [{
        "Tenant": "cgrates.org",
        "ID": "ATTR_0NSN_to_E164_02_Area_Code",
        "Contexts": ["*any"],
        "FilterIDs": [
            "*string:~*req.Account:NickTest7"
        ],
        "Attributes": [
            {
            "FilterIDs": [],
            "Path": "*req.Subject",
            "Type": "*variable",
            "Value": "~*req.Subject:s/^0(\d{1})(\d{8})$/61${1}${2}/"
            },
            {
            "FilterIDs": [],
            "Path": "*req.Subject",
            "Type": "*variable",
            "Value": "~*req.Subject:s/^(\d{8})$/612${1}/"
            },
        ],
        "Blocker": False,
        "Weight": 10
    }],
}

And then under AttributeS we’ve defined a rule to replace anything matching the 0NSN regex, to strip the first digit and append a 61, to put it in E.164 format, and in SN format as the second entry.

We can now test this out:

{'method': 'AttributeSv1.ProcessEvent', 'params': [{'Tenant': 'cgrates.org', 'Event': {'Account': 'NickTest7', 'Subject': '0312341234'}, 'APIOpts': {'*processRuns': 5, '*profileRuns': 5, '*subsys': '*sessions'}}]}
{'error': None,
 'id': None,
 'result': {'APIOpts': {'*processRuns': 5,
                        '*profileRuns': 5,
                        '*subsys': '*sessions'},
            'AlteredFields': ['*req.Subject'],
            'Event': {'Account': 'NickTest7', 'Subject': '61312341234'},
            'ID': '',
            'MatchedProfiles': ['cgrates.org:ATTR_0NSN_to_E164_02_Area_Code'],
            'Tenant': 'cgrates.org',
            'Time': None}}



{'method': 'AttributeSv1.ProcessEvent', 'params': [{'Tenant': 'cgrates.org', 'Event': {'Account': 'NickTest7', 'Subject': '12341234'}, 'APIOpts': {'*processRuns': 5, '*profileRuns': 5, '*subsys': '*sessions'}}]}
{'error': None,
 'id': None,
 'result': {'APIOpts': {'*processRuns': 5,
                        '*profileRuns': 5,
                        '*subsys': '*sessions'},
            'AlteredFields': ['*req.Subject'],
            'Event': {'Account': 'NickTest7', 'Subject': '61212341234'},
            'ID': '',
            'MatchedProfiles': ['cgrates.org:ATTR_0NSN_to_E164_02_Area_Code'],
            'Tenant': 'cgrates.org',
            'Time': None}}

And there you have it folks; our number format standardized.

We can combo / cascade AttributeS rules together, with the aid of the Weight and Blocker flags in the API.

Let’s imagine the 61212341234 number has been ported from Operator1 to Operator2, and the Destinations we’ve defined in CGrateS for this prefix are currently set to DST_Operator1.
But because this number has been ported we should use DST_Operator2, so we charge the Operator2, as this number has been ported.

This means we don’t need to duplicate destination definitions to show this number has been ported, as this will be updated as the call gets rated, so we just assign the Attribute to each ported number.

So let’s match where the Subject of the call is 61212341234 (even though we’re going to input the Subject as 12341234), and rewrite the Destination attribute to DST_Operator2:

{
    "method": "APIerSv2.SetAttributeProfile",
    "params": [{
        "Tenant": "cgrates.org",
        "ID": "ATTR_Ported_61212341234",
        "Contexts": ["*any"],
        "FilterIDs": [
            "*string:~*req.Subject:61212341234",
        ],
        "Attributes": [
            {
            "FilterIDs": [],
            "Path": "*req.Destination",
            "Type": "*constant",
            "Value": "DST_Operator2"
            },
        ],
        "Blocker": False,
        "Weight": 5
    }],
}

From the results we can see we matched two AttributeS rules, the first, ATTR_0NSN_to_E164_02_Area_Code reformatted the Subject of the call from 12341234 to 61212341234, then the updated Subject was passed through to ATTR_Ported_61212341234, which updated the Destination attribute to DST_Operator2.

{'method': 'AttributeSv1.ProcessEvent', 'params': [{'Tenant': 'cgrates.org', 'Event': {'Account': 'NickTest7', 'Subject': '12341234'}, 'APIOpts': {'*processRuns': 5, '*profileRuns': 5, '*subsys': '*sessions'}}]}
{'error': None,
 'id': None,
 'result': {'APIOpts': {'*processRuns': 5,
                        '*profileRuns': 5,
                        '*subsys': '*sessions'},
            'AlteredFields': ['*req.Subject', '*req.Destination'],
            'Event': {'Account': 'NickTest7',
                      'Destination': 'DST_Operator2',
                      'Subject': '61212341234'},
            'ID': '',
            'MatchedProfiles': ['cgrates.org:ATTR_0NSN_to_E164_02_Area_Code',
                                'cgrates.org:ATTR_Ported_61212341234'],
            'Tenant': 'cgrates.org',
            'Time': None}}

Hopefully this has helped you to dip a toe into the CGrateS AttributeS pool, and give you some ideas of what we can achieve inside AttributeS.

A complete working code & config is available on my Github here.

If you’re having issues, make sure you have loaded the config file, are running the latest version, and if in doubt (and not on a production system), this script will clear all the data for you so you can rule out anything interfering.

CGrateS – ActionTriggers

In our last post we looked at Actions and ActionPlans, and one of the really funky things we can do is setting ActionPlans to trigger on a time schedule or setting ActionTriggers to trigger on an event.

We’re going to build on the examples we had on the last post, so we’ll assume your code is up to the point where we’ve added a Signup Bonus to an account, using an ActionPlan we assigned when creating the account.

In this post, we’re going to create an action that charges $6, called “Action_Monthly_Charge“, and tie it to an ActionPlan called “ActionPlan_Monthly_Charge“, but to demo how this works rather than charging this Monthly, we’re going to charge it every minute.

Then with our balances ticking down, we’ll set up an ActionTrigger to trigger when the balance drops below $95, and alert us.

Defining the Monthly Charge Action

The Action for the Monthly charge will look much like the other actions we’ve defined, except the Identifier is *debit so we know we’re deducting from the balance, and we’ll log to the CDRs table too:

# Action to add a Monthly charge of $6
Action_Monthly_Charge = {
    "id": "0",
    "method": "ApierV1.SetActions",
    "params": [
        {
          "ActionsId": "Action_Monthly_Charge",
          "Actions": [
              {
                'Identifier': '*debit',
                'BalanceType': '*monetary',
               'Units': 6,
               'Id': 'Action_Monthly_Charge_Debit',
               'Weight': 70},
              {
                  "Identifier": "*log",
                  "Weight": 60,
                  'Id' : "Action_Monthly_Charge_Log"
              },
              {
                  "Identifier": "*cdrlog",
                  "BalanceId": "",
                  "BalanceUuid": "",
                  "BalanceType": "*monetary",
                  "Directions": "*out",
                  "Units": 0,
                  "ExpiryTime": "",
                  "Filter": "",
                  "TimingTags": "",
                  "DestinationIds": "",
                  "RatingSubject": "",
                  "Categories": "",
                  "SharedGroups": "",
                  "BalanceWeight": 0,
                  "ExtraParameters": "{\"Category\":\"^activation\",\"Destination\":\"Recurring Charge\"}",
                  "BalanceBlocker": "false",
                  "BalanceDisabled": "false",
                  "Weight": 80
              },
          ]}]}
pprint.pprint(CGRateS_Obj.SendData(Action_Monthly_Charge))

Next we’ll need to wrap this up into an ActionPlan, this is where some of the magic happens. Inside the action plan we can set a once off time, or a recurring time, kinda like Cron.

We’re setting the time to *every_minute so things will happen quickly while we watch, this action will get triggered every 60 seconds. In real life of course, for a Monthly charge, we’d want to trigger this Action monthly, so we’d set this value to *monthly. If we wanted this to charge on the 2nd of the month we’d set the MonthDays to “2”, etc, etc.

# # Create ActionPlan using SetActionPlan to trigger the Action_Monthly_Charge
SetActionPlan_Daily_Action_Monthly_Charge_JSON = {
    "method": "ApierV1.SetActionPlan",
    "params": [{
        "Id": "ActionPlan_Monthly_Charge",
        "ActionPlan": [{
            "ActionsId": "Action_Monthly_Charge",
            "Years": "*any",
            "Months": "*any",
            "MonthDays": "*any",
            "WeekDays": "*any",
            "Time": "*every_minute",
            "Weight": 10
        }],
        "Overwrite": True,
        "ReloadScheduler": True
    }]
}
pprint.pprint(CGRateS_Obj.SendData(
    SetActionPlan_Daily_Action_Monthly_Charge_JSON))

Alright, but now what’s going to happen?

If you think the accounts will start getting debited every 60 seconds after applying this, you’d be wrong, we need to associate this ActionPlan with an Account first, this is how we control which accounts get which ActionPlans tied to them, to do this we’ll use the SetAccout API again we’ve been using to create accounts:

# Create the Account object inside CGrateS & assign ActionPlan_Signup_Bonus and ActionPlan_Monthly_Charge
Create_Account_JSON = {
    "method": "ApierV2.SetAccount",
    "params": [
        {
            "Tenant": "cgrates.org",
            "Account": str(Account),
            "ActionPlanIds": ["ActionPlan_Signup_Bonus", "ActionPlan_Monthly_Charge"],
            "ActionPlansOverwrite": True,
            "ReloadScheduler":True
        }
    ]
}
print(CGRateS_Obj.SendData(Create_Account_JSON))

So what’s going to happen if we run this?

Well, for starters the ActionPlan named “ActionPlan_Signup_Bonus” is going to be triggered, as in the ActionPlan it’s Timing is set to *asap, so CGrateS will apply the corresponding Action (“Action_Add_Signup_Bonus“) right away, which will credit the account $99.

But a minute after that, we’ll trigger the ActionPlan named “ActionPlan_Monthly_Charge”, as the timing for this is set to *every_minute, when the Action “Action_Monthly_Charge” is triggered, it’s going to be deducting $6 from the balance.

We can check this by using the GetAccount API:

# Get Account Info
pprint.pprint(CGRateS_Obj.SendData({'method': 'ApierV2.GetAccount', 'params': [
              {"Tenant": "cgrates.org", "Account": str(Account)}]}))

You should see a balance of $99 to start with, and then after 60 seconds, it should be down to $93, and so on.

{'error': None,
 'id': None,
 'result': {'ActionTriggers': None,
            'AllowNegative': False,
            'BalanceMap': {'*monetary': [{'Blocker': False,
                                          'Categories': {},
                                          'DestinationIDs': {},
                                          'Disabled': False,
                                          'ExpirationDate': '2023-11-17T14:57:20.71493633+11:00',
                                          'Factor': None,
                                          'ID': 'Balance_Signup_Bonus',
                                          'RatingSubject': '',
                                          'SharedGroups': {},
                                          'TimingIDs': {},
                                          'Timings': None,
                                          'Uuid': '3a896369-8107-4e32-bcef-2d078c981b8a',
                                          'Value': 99,
                                          'Weight': 1200}]},
            'Disabled': False,
            'ID': 'cgrates.org:Nick_Test_123',
            'UnitCounters': None,
            'UpdateTime': '2023-10-17T14:57:21.802521707+11:00'}}

Triggering Actions based on Balances with ActionTriggers

Okay, so we’ve set up recurring charges, now let’s get notified if the balance drops below $95, we’ll start, like we have before, with defining an Action, this will log to the CDRs table, HTTP post and write to syslog:


#Define a new Action to send an HTTP POST
Action_HTTP_Notify_95 = {
    "id": "0",
    "method": "ApierV1.SetActions",
    "params": [
        {
          "ActionsId": "Action_HTTP_Notify_95",
          "Actions": [
              {
                  "Identifier": "*cdrlog",
                  "BalanceId": "",
                  "BalanceUuid": "",
                  "BalanceType": "*monetary",
                  "Directions": "*out",
                  "Units": 0,
                  "ExpiryTime": "",
                  "Filter": "",
                  "TimingTags": "",
                  "DestinationIds": "",
                  "RatingSubject": "",
                  "Categories": "",
                  "SharedGroups": "",
                  "BalanceWeight": 0,
                  "ExtraParameters": "{\"Category\":\"^activation\",\"Destination\":\"Balance dipped below $95\"}",
                  "BalanceBlocker": "false",
                  "BalanceDisabled": "false",
                  "Weight": 80
              },
              {
                  "Identifier": "*http_post_async",
                  "ExtraParameters": "http://10.177.2.135/95_remaining",
                  "ExpiryTime": "*unlimited",
                  "Weight": 700
              },
              {
                  "Identifier": "*log",
                  "Weight": 1200
              }
          ]}]}
pprint.pprint(CGRateS_Obj.SendData(Action_HTTP_Notify_95))

Now we’ll define an ActionTrigger to check if the balance is below $95 and trigger our newly created Action (“Action_HTTP_Notify_95“) when that condition is met:


#Define ActionTrigger
ActionTrigger_95_Remaining_JSON = {
    "method": "APIerSv1.SetActionTrigger",
    "params": [
        {
            "GroupID" : "ActionTrigger_95_Remaining",
            "ActionTrigger": 
                {
                    "BalanceType": "*monetary",
                    "Balance" : {
                        'BalanceType': '*monetary',
                        'ID' : "*default",
                        'BalanceID' : "*default",
                        'Value' : 95,
                        },
                    "ThresholdType": "*min_balance",
                    "ThresholdValue": 95,
                    "Weight": 10,
                    "ActionsID" : "Action_HTTP_Notify_95",
                },
            "Overwrite": True
        }
    ]
}
pprint.pprint(CGRateS_Obj.SendData(ActionTrigger_95_Remaining_JSON))

We’ve defined the ThresholdType of *min_balance, but we could equally set this to ThresholdType to *max_balance, *balance_expired or trigger when a certain Counter has been triggered enough times.

Adding an ActionTrigger to an Account

Again, like the ActionPlan we created before, before the ActionTrigger we just created will be used, we need to associate it with an Account, for this we’ll use the AddAccountActionTriggers API, specify the Account and the ActionTriggerID for the ActionTrigger we just created.


#Add ActionTrigger to Account 
Add_ActionTrigger_to_Account_JSON = {
    "method": "APIerSv1.AddAccountActionTriggers",
    "params": [
        {
            "Tenant": "cgrates.org",
            "Account": str(Account),
            "ActionTriggerIDs": ["ActionTrigger_95_Remaining"],
            "ActionTriggersOverwrite": True
        }
    ]
}
pprint.pprint(CGRateS_Obj.SendData(Add_ActionTrigger_to_Account_JSON))

If we run this all together, creating the account with the “ActionPlan_Signup_Bonus” will give the account a $99 Balance. But after 60 seconds, “ActionPlan_Monthly_Charge” will kick in, and every 60 seconds after that, at which point the balance will get to below $95 when CGrateS will trigger the ActionTriggerActionTrigger_95_Remaining” and get the HTTP POST to the HTTP endpoint and log entry:

We can check on this using the ApierV2.GetAccount method, where we’ll see the ActionTrigger we just defined.

Checking out the LastExecutionTime we can see if the ActionTrigger been triggered or not.

So using this technique, we can notify a customer when they’ve used a certain amount of their balance, but we can lock out Accounts who have spent more than their allocated spend limit by setting an Action that suspends the Account once it reaches a certain level. We notify customers when balance expires, or if a certain number of counters has been triggered.

As always I’ve put all the code used in this example, from start to finish, up on GitHub.

CGrateS – Actions & Action Plans

In our last post we added a series of different balances to an account, these were actions we took via the API specifically to add a balance.

But there’s a lot more actions we may want to do beyond just adding balance.

CGrateS has the concept of “Actions” which are, as the name suggests, things we want to do to the system.

Some example Actions would be:

  • Adding / Deducting / Resetting a balance
  • Adding a CDR log
  • Enable/Disable an account
  • Sending HTTP POST request or email notification
  • Deleting / suspending account
  • Transferring balances

We can run these actions on a timed basis, or when an event is triggered, and group Actions together to run multiple actions via an ActionTrigger, this means we can trigger these Actions, not just by sending an API request, but based on the state of the subscriber / account.

Let’s look at some examples,

We can define an Action named “Action_Monthly_Fee” to debit $12 from the monetary balance of an account, and add a CDR with the name “Monthly Account Fee” when it does so.
We can use ActionTriggers to run this every month on the account automatically.

We can define an Action named “Usage_Warning_10GB” to send an email to the Account owner to inform them they’ve used 10GB of usage, and use ActionTriggers to send this when the customer has used 10GB of their *data balance.

Using Actions

Note: The Python script I’ve used with all the examples in this post is available on GitHub here.

Let’s start by defining an Account, just as we have before:

# Create the Account object inside CGrateS
Account = "Nick_Test_123"
Create_Account_JSON = {
    "method": "ApierV2.SetAccount",
    "params": [
        {
            "Tenant": "cgrates.org",
            "Account": str(Account)
        }
    ]
}
print(CGRateS_Obj.SendData(Create_Account_JSON))

Let’s start basic; to sweeten the deal for new Accounts, we’ll give them $99 of balance to use in the first month they have the service. Rather than hitting the AddBalance API, we’ll define an Action named “Action_Add_Signup_Bonus” to credit $99 of monetary balance to an account.

If you go back to our last post, you should know what we’d need to do to add this balance manually with the AddBalance API, but let’s look at how we can create the same balance add functionality using Actions:

#Add a Signup Bonus of $99 to the account with type *monetary expiring a month after it's added
Action_Signup_Bonus = {
    "id": "0",
    "method": "ApierV1.SetActions",
    "params": [
        {
          "ActionsId": "Action_Add_Signup_Bonus",
          "Actions": [
              {
                  "Identifier": "*topup",
                  "BalanceId": "Balance_Signup_Bonus",
                  "BalanceUuid": "",
                  "BalanceType": "*monetary",
                  "Directions": "*out",
                  "Units": 99,
                  "ExpiryTime": "*month",
                  "Filter": "",
                  "TimingTags": "",
                  "DestinationIds": "",
                  "RatingSubject": "",
                  "Categories": "",
                  "SharedGroups": "",
                  "BalanceWeight": 1200,
                  "ExtraParameters": "",
                  "BalanceBlocker": "false",
                  "BalanceDisabled": "false",
                  "Weight": 10
              }
]}]}
pprint.pprint(CGRateS_Obj.SendData(Action_Signup_Bonus))

Alright, this should look pretty familiar if you’ve just come from Account Balances.
You’ll notice we’re no longer calling, SetBalance, we’re now calling SetActions, to create the ActionsId with the name “Action_Add_Signup_Bonus“.
In “Action_Add_Signup_Bonus” we’ve got an actions we’ll do when “Action_Add_Signup_Bonus” is called.
We can define multiple actions, but for now we’ve only got one action defined, which has the Identifier (which defines what the action does) set to *topup to add balance.
As you probably guessed, we’re triggering a top up, and setting the BalanceId, BalanceType, Units, ExpiryTime and BalanceWeight just as we would using SetBalance to add a balance.

So how do we use the Action we just created? Well, there’s a lot of options, but let’s start with the most basic – Via the API:

# Trigger ExecuteAction
Account_Action_trigger_JSON = {"method": "APIerSv1.ExecuteAction", "params": [
    {"Tenant": "cgrates.org", "Account": str(Account), "ActionsId": "Action_Add_Signup_Bonus"}]}
pprint.pprint(CGRateS_Obj.SendData(Account_Action_trigger_JSON))

Boom, we’ve called the ExecuteAction API call, to execute the Action named “Action_Add_Signup_Bonus“.

We can check on this with GetAccount again and check the results:

# Get Account Info
pprint.pprint(CGRateS_Obj.SendData({'method': 'ApierV2.GetAccount', 'params': [
              {"Tenant": "cgrates.org", "Account": str(Account)}]}))
{'method': 'ApierV2.GetAccount', 'params': [{'Tenant': 'cgrates.org', 'Account': 'Nick_Test_123'}]}
{'error': None,
 'id': None,
 'result': {'ActionTriggers': None,
            'AllowNegative': False,
            'BalanceMap': {'*monetary': [{'Blocker': False,
                                          'Categories': {},
                                          'DestinationIDs': {},
                                          'Disabled': False,
                                          'ExpirationDate': '2023-11-15T10:27:52.865119544+11:00',
                                          'Factor': None,
                                          'ID': 'Balance_Signup_Bonus',
                                          'RatingSubject': '',
                                          'SharedGroups': {},
                                          'TimingIDs': {},
                                          'Timings': None,
                                          'Uuid': '01cfb471-ba38-453a-b0e2-8ddb397dfe9c',
                                          'Value': 99,
                                          'Weight': 1200}]},
            'Disabled': False,
            'ID': 'cgrates.org:Nick_Test_123',
            'UnitCounters': None,
            'UpdateTime': '2023-10-15T10:27:52.865144268+11:00'}}

Great start!

Making Actions Useful

Well congratulations, we took something we previously did with one API call (SetBalance), and we did it with two (SetAction and ExcecuteAction)!

But let’s start paying efficiency dividends,

When we add a balance, let’s also add a CDR log event so we’ll know the account was credited with the balance when we call the GetCDRs API call.

We’d just modify our SetActions to include an extra step:

Action_Signup_Bonus = {
    "id": "0",
    "method": "ApierV1.SetActions",
    "params": [
        {
          "ActionsId": "Action_Add_Signup_Bonus",
          "Actions": [
              {
                  "Identifier": "*topup",
                  "BalanceId": "Balance_Signup_Bonus",
...
              }, 
              {
                  "Identifier": "*cdrlog",
                  "BalanceId": "",
                  "BalanceUuid": "",
                  "BalanceType": "*monetary",
                  "Directions": "*out",
                  "Units": 0,
                  "ExpiryTime": "",
                  "Filter": "",
                  "TimingTags": "",
                  "DestinationIds": "",
                  "RatingSubject": "",
                  "Categories": "",
                  "SharedGroups": "",
                  "BalanceWeight": 0,
                  "ExtraParameters": "{\"Category\":\"^activation\",\"Destination\":\"Your sign up Bonus\"}",
                  "BalanceBlocker": "false",
                  "BalanceDisabled": "false",
                  "Weight": 10
              }
]}]}
pprint.pprint(CGRateS_Obj.SendData(Action_Signup_Bonus))

Boom, now we’ll get a CDR created when the Action is triggered.

But let’s push this a bit more and add some more steps in the Action:

As well as adding balance and putting in a CDR to record what we did, let’s also send a notification to our customer via an HTTP API (BYO customer push notification system) and log to Syslog what’s going on.

# Add a Signup Bonus of $99 to the account with type *monetary expiring a month after it's added
Action_Signup_Bonus = {
    "id": "0",
    "method": "ApierV1.SetActions",
    "params": [
        {
          "ActionsId": "Action_Add_Signup_Bonus",
          "Actions": [
              {
                  "Identifier": "*topup",
                  "BalanceId": "Balance_Signup_Bonus",
                  "BalanceUuid": "",
                  "BalanceType": "*monetary",
                  "Directions": "*out",
                  "Units": 99,
                  "ExpiryTime": "*month",
                  "Filter": "",
                  "TimingTags": "",
                  "DestinationIds": "",
                  "RatingSubject": "",
                  "Categories": "",
                  "SharedGroups": "",
                  "BalanceWeight": 1200,
                  "ExtraParameters": "",
                  "BalanceBlocker": "false",
                  "BalanceDisabled": "false",
                  "Weight": 90
              },
              {
                  "Identifier": "*cdrlog",
                  "BalanceId": "",
                  "BalanceUuid": "",
                  "BalanceType": "*monetary",
                  "Directions": "*out",
                  "Units": 0,
                  "ExpiryTime": "",
                  "Filter": "",
                  "TimingTags": "",
                  "DestinationIds": "",
                  "RatingSubject": "",
                  "Categories": "",
                  "SharedGroups": "",
                  "BalanceWeight": 0,
                  "ExtraParameters": "{\"Category\":\"^activation\",\"Destination\":\"Your sign up Bonus\"}",
                  "BalanceBlocker": "false",
                  "BalanceDisabled": "false",
                  "Weight": 80
              },
              {
                  "Identifier": "*http_post_async",
                  "ExtraParameters": "http://10.177.2.135/example_endpoint",
                  "ExpiryTime": "*unlimited",
                  "Weight": 70
              },
              {
                  "Identifier": "*log",
                  "Weight": 60
              }
          ]}]}
pprint.pprint(CGRateS_Obj.SendData(Action_Signup_Bonus))

Phew! That’s a big action, but if we execute the action again using ExecuteAction, we’ll get all these things happening at once:

Okay, now we’re getting somewhere!

ActionPlans

Having an Action we can trigger manually via the API is one thing, but being able to trigger it automatically is where it really comes into its own.

Let’s define an ActionPlan, that is going to call our Action named “Action_Add_Signup_Bonus” as soon as the ActionPlan is assigned to an Account.

# Create ActionPlan using SetActionPlan to trigger the Action_Signup_Bonus ASAP
SetActionPlan_Signup_Bonus_JSON = {
    "method": "ApierV1.SetActionPlan",
    "params": [{
        "Id": "ActionPlan_Signup_Bonus",
        "ActionPlan": [{
            "ActionsId": "Action_Add_Signup_Bonus",
            "Years": "*any",
            "Months": "*any",
            "MonthDays": "*any",
            "WeekDays": "*any",
            "Time": "*asap",
            "Weight": 10
        }],
        "Overwrite": True,
        "ReloadScheduler": True
    }]
}
pprint.pprint(CGRateS_Obj.SendData(SetActionPlan_Signup_Bonus_JSON))

So what have we done here? We’ve made an ActionPlan named “Action_Add_Signup_Bonus”, which, when associated with an account, will run the Action “Action_Add_Signup_Bonus” as soon as it’s tied to the account, thanks to the Time*asap“.

Now if we create or update an Account using the SetAccount method, we can set the ActionPlanIds to reference our “ActionPlan_Signup_Bonus” and it’ll be triggered straight away.

# Create the Account object inside CGrateS
Create_Account_JSON = {
    "method": "ApierV2.SetAccount",
    "params": [
        {
            "Tenant": "cgrates.org",
            "Account": str(Account),
            "ActionPlanIds": ["ActionPlan_Signup_Bonus"],
            "ActionPlansOverwrite": True,
            "ReloadScheduler":True
        }
    ]
}
print(CGRateS_Obj.SendData(Create_Account_JSON))

Now if we were to run a GetAccount API call, we’ll see the Account balance assigned that was created by the action Action_Add_Signup_Bonus which was triggered by ActionPlan assigned to the account:

{'method': 'ApierV2.GetAccount', 'params': [{'Tenant': 'cgrates.org', 'Account': 'Nick_Test_123'}]}
{'error': None,
 'id': None,
 'result': {'ActionTriggers': None,
            'AllowNegative': False,
            'BalanceMap': {'*monetary': [{'Blocker': False,
                                          'Categories': {},
                                          'DestinationIDs': {},
                                          'Disabled': False,
                                          'ExpirationDate': '2023-11-16T12:41:02.530985381+11:00',
                                          'Factor': None,
                                          'ID': 'Balance_Signup_Bonus',
                                          'RatingSubject': '',
                                          'SharedGroups': {},
                                          'TimingIDs': {},
                                          'Timings': None,
                                          'Uuid': '7bdbee5c-0888-4da2-b42f-5d6b8966ee2d',
                                          'Value': 99,
                                          'Weight': 1200}]},
            'Disabled': False,
            'ID': 'cgrates.org:Nick_Test_123',
            'UnitCounters': None,
            'UpdateTime': '2023-10-16T12:41:12.7236096+11:00'}}

But here’s where it gets interesting, in the ActionPlan we just defined the Time was set to “*asap“, which means the Action is triggered as soon as it was assigned to the account, but if we set the Time value to “*monthly“, the Action would get triggered every month, or *every_minute to trigger every minute, or *month_end to trigger at the end of every month.

Code for these examples is available here.

I’m trying to keep these posts shorter as there’s a lot to cover. Stick around for our next post, we’ll look at some more ActionTriggers to keep decreasing the balance of the account, and setting up ActionTriggers to send a notification to the customer to tell them when their balance is getting low, or any other event based Action you can think of!

Credit Control Request / Answer call flow in IMS Charging

Basics of EPC/LTE Online Charging (OCS)

Early on as subscriber trunk dialing and automated time-based charging was introduced to phone networks, engineers were faced with a problem from Payphones.

Previously a call had been a fixed price, once the caller put in their coins, if they put in enough coins, they could dial and stay on the line as long as they wanted.

But as the length of calls began to be metered, it means if I put $3 of coins into the payphone, and make a call to a destination that costs $1 per minute, then I should only be allowed to have a 3 minute long phone call, and the call should be cutoff before the 4th minute, as I would have used all my available credit.

Conversely if I put $3 into the Payphone and only call a $1 per minute destination for 2 minutes, I should get $1 refunded at the end of my call.

We see the exact same problem with prepaid subscribers on IMS Networks, and it’s solved in much the same way.

In LTE/EPC Networks, Diameter is used for all our credit control, with all online charging based on the Ro interface. So let’s take a look at how this works and what goes on.

Generic 3GPP Online Charging Architecture

3GPP defines a generic 3GPP Online charging architecture, that’s used by IMS for Credit Control of prepaid subscribers, but also for prepaid metering of data usage, other volume based flows, as well as event-based charging like SMS and MMS.

Network functions that handle chargeable services (like the data transferred through a P-GW or calls through a S-CSCF) contain a Charging Trigger Function (CTF) (While reading the specifications, you may be left thinking that the Charging Trigger Function is a separate entity, but more often than not, the CTF is built into the network element as an interface).

The CTF is a Diameter application that generates requests to the Online Charging Function (OCF) to be granted resources for the session / call / data flow, the subscriber wants to use, prior to granting them the service.

So network elements that need to charge for services in realtime contain a Charging Trigger Function (CTF) which in turn talks to an Online Charging Function (OCF) which typically is part of an Online Charging System (AKA OCS).

For example when a subscriber turns on their phone and a GTP session is setup on the P-GW/PCEF, but before data is allowed to flow through it, a Diameter “Credit Control Request” is generated by the Charging Trigger Function (CTF) in the P-GW/PCEF, which is sent to our Online Charging Server (OCS).

The “Credit Control Answer” back from the OCS indicates the subscriber has the balance needed to use data services, and specifies how much data up and down the subscriber has been granted to use.

The P-GW/PCEF grants service to the subscriber for the specified amount of units, and the subscriber can start using data.

This is a simplified example – Decentralized vs Centralized Rating and Unit Determination enter into this, session reservation, etc.

The interface between our Charging Trigger Functions (CTF) and the Online Charging Functions (OCF), is the Ro interface, which is a Diameter based interface, and is common not just for online charging for data usage, IMS Credit Control, MMS, value added services, etc.

3GPP define a reference online-charging interface, the Ro interface, and all the application-specific interfaces, like the Gy for billing data usage, build on top of the Ro interface spec.

Basic Credit Control Request / Credit Control Answer Process

This example will look at a VoLTE call over IMS.

When a subscriber sends an INVITE, the Charging Trigger Function baked in our S-CSCF sends a Diameter “Credit Control Request” (CCR) to our Online Charging Function, with the type INITIAL, meaning this is the first CCR for this session.

The CCR contains the Service Information AVP. It’s this little AVP that is where the majority of the magic happens, as it defines what the service the subscriber is requesting. The main difference between the multitude of online charging interfaces in EPC networks, is just what the service the customer is requesting, and the specifics of that service.

For this example it’s a voice call, so this Service Information AVP contains a “IMS-Information” AVP. This AVP defines all the parameters for a IMS phone call to be online charged, for a voice call, this is the called-party, calling party, SDP (for differentiating between voice / video, etc.).

It’s the contents of this Service Information AVP the OCS uses to make decision on if service should be granted or not, and how many service units to be granted. (If Centralized Rating and Unit Determination is used, we’ll cover that in another post)
The actual logic, relating to this decision is typically based on the the rating and tariffing, credit control profiles, etc, and is outside the scope of the interface, but in short, the OCS will make a yes/no decision about if the subscriber should be granted access to the particular service, and if yes, then how many minutes / Bytes / Events should be granted.

In the received Credit Control Answer is received back from our OCS, and the Granted-Service-Unit AVP is analysed by the S-CSCF.
For a voice call, the service units will be time. This tells the S-CSCF how long the call can go on before the S-CSCF will need to send another Credit Control Request, for the purposes of this example we’ll imagine the returned value is 600 seconds / 10 minutes.

The S-CSCF will then grant service, the subscriber can start their voice call, and start the countdown of the time granted by the OCS.

As our chatty subscriber stays on their call, the S-CSCF approaches the limit of the Granted Service units from the OCS (Say 500 seconds used of the 600 seconds granted).
Before this limit is reached the S-CSCF’s CTF function sends another Credit Control Request with the type UPDATE_REQUEST. This allows the OCS to analyse the remaining balance of the subscriber and policies to tell the S-CSCF how long the call can continue to proceed for in the form of granted service units returned in the Credit Control Answer, which for our example can be 300 seconds.

Eventually, and before the second lot of granted units runs out, our subscriber ends the call, for a total talk time of 700 seconds.

But wait, the subscriber been granted 600 seconds for our INITIAL request, and a further 300 seconds in our UPDATE_REQUEST, for a total of 900 seconds, but the subscriber only used 700 seconds?

The S-CSCF sends a final Credit Control Request, this time with type TERMINATION_REQUEST and lets the OCS know via the Used-Service-Unit AVP, how many units the subscriber actually used (700 seconds), meaning the OCS will refund the balance for the gap of 200 seconds the subscriber didn’t use.

If this were the interface for online charging of data, we’d have the PS-Information AVP, or for online charging of SMS we’d have the SMS-Information, and so on.

The architecture and framework for how the charging works doesn’t change between a voice call, data traffic or messaging, just the particulars for the type of service we need to bill, as defined in the Service Information AVP, and the OCS making a decision on that based on if the subscriber should be granted service, and if yes, how many units of whatever type.