Tag Archives: Standalone

EIR in 5G Networks (N5g-eir_EquipmentIdentityCheck)

Today, we’re going to look at one of the simplest Service Based Interfaces in the 5G Core, the Equipment Identity Register (EIR).

The purpose of the EIR is very simple – When a subscriber connects to the network it’s Permanent Equipment Identifier (PEI) can be queried against an EIR to determine if that device should be allowed onto the network or not.

The PEI is the IMEI of a phone / device, with the idea being that stolen phones IMEIs are added to a forbidden list on the EIR, and prohibited from connecting to the network, making them useless, in turn making stolen phones harder to resell, deterring mobile phone theft.

In reality these forbidden-lists are typically either country specific or carrier specific, meaning if the phone is used in a different country, or in some cases a different carrier, the phone’s IMEI is not in the forbidden-list of the overseas operator and can be freely used.

The dialog goes something like this:

AMF: Hey EIR, can PEI 49-015420-323751-8 connect to the network?
EIR: (checks if 49-015420-323751-8 in forbidden list - It's not) Yes.


AMF: Hey EIR, can PEI 58-241992-991142-3 connect to the network?
EIR: (checks if 58-241992-991142-3 is in forbidden list - It is) No.

(Optionally the SUPI can be included in the query as well, to lock an IMSI to an IMEI, which is a requirement in some jurisdictions)

As we saw in the above script, the AMF queries the EIR using the N5g-eir_EquipmentIdentityCheck service.

The N5g-eir_EquipmentIdentityCheck service only offers one operation – CheckEquipmentIdentity.

It’s called by sending an HTTP GET to:


Obviously we’ll need to include the PEI (IMEI) in the HTTP GET, which means if you remember back to basic HTTP GET, you may remember means you have to add ?attribute=value&attribute=value… for each attribute / value you want to share.

For the CheckEquipmentIdentity operation, the PEI is a mandatory parameter, and optionally the SUPI can be included, this means to query our PEI (The IMSI of the phone) against our EIR we’d simply send an HTTP GET to:

AMF: HTTP GET http://{apiRoot}/n5g-eir-eic/v1/equipment-status?pei=490154203237518
EIR: 200 (Body EirResponseData: status "WHITELISTED")

And how it would look for a blacklisted IMEI:

AMF: HTTP GET http://{apiRoot}/n5g-eir-eic/v1/equipment-status?pei=490154203237518
EIR: 404 (Body EirResponseData: status "BLACKLISTED")

Because it’s so simple, the N5g-eir_EquipmentIdentityCheck service is a great starting point for learning about 5G’s Service Based Interfaces.

You can find all the specifics in 3GPP TS 29.511 – Equipment Identity Register Services; Stage 3

My first 5G Core: Open5Gs and UERANSIM

Note: As this space develops so quickly I’ve refreshed the original post from November 2021 in March 2021 with updated instructions.

While 5G SA devices are still in their early stages, and 5G RAN hardware / gNodeBs are hard to come by, so today we’ll cover using UERANSIM to simulate UEs and 5G RAN, to put test calls through our 5GC.

Bringing your 5G Core Online

We’ll use Open5Gs for all the 5GC components, and install on any recent Ubuntu distribution.

Installation is nice and easy;

$ sudo apt update 
$ sudo apt install software-properties-common 
$ sudo add-apt-repository ppa:open5gs/latest 
$ sudo apt update 
$ sudo apt install open5gs

The first point of contact we’ll need to talk about is the AMF,

The AMF – the Access and Mobility Function is reached by the gNodeB over the N2 interface. The AMF handles our 5G NAS messaging, which is the messaging used by the UEs / Devices to request data services, manage handovers between gNodeBs when moving around the network, and authenticate to the network.

By default the AMF binds to a loopback IP, which is fine if everything is running on the same box, but becomes an issue for real gNodeBs or if we’re running UERANSIM on a different machine.

This means we’ll need to configure our AMF to bind to the IP of the machine it’s running on, by configuring the AMF in /etc/open5gs/amf.yaml, so we’ll change the ngap addr to bind the AMF to the machine’s IP, for me this is,

  - addr:

In the amf.conf there’s a number of things we can change and configure; such as the PLMN and network name, the NRF parameters, however for now we’ll keep it simple and leave everything else as default.

To allow the changes to take effect, we’ll restart the Open5GS AMF service to make our changes take effect;

$ sudo systemcl restart open5gs-amfd

Setting up the Simulator

We’re using UERANSIM as our UE & RAN Simulator, so we’ll need to get it installed. I’m doing this on an Ubuntu system as we’re using Snaps.

$ sudo apt update 
$ sudo apt upgrade 
$ sudo apt install make g++ libsctp-dev lksctp-tools 
$ iproute2 sudo snap install cmake --classic

With all the prerequisites installed we’ll clone the Git repository and make everything from source;

We’ll clone the Github repository, move into it and make from source.

$ git clone https://github.com/aligungr/UERANSIM
$ make

Now we wait for everything to compile,

XKCD – Compiling

Once we’ve got the software installed we’ll need to put together the basic settings.

You should see these files in the /build/ directory and they should be executable.

Running the Simulator (UERANSIM)

UERANSIM has two key parts, like any RAN,

The first is the gNodeB, that connects to our AMF and handles subscriber traffic over our (simulated) radio link,

The other is our subscribers themselves – the UEs.

Both are defined and setup through config files in the config/ directory,

Configuring & Starting the gNodeB

While we’re not actually going to bring anything “on air” in the RF sense, we’ll still need to configure and start our gNodeB.

All the parameters for our gNodeB are set in the config/open5gs-gnb.yaml file,

Inside here we’ll need to set the the parameters of our simulated gNodeB, for us this means (unless you’ve changed the PLMN etc) just changing the Link IPs that the gNodeB binds to, and the IP of the AMFs (for me it’s – you’ll need to substitute these IPs with your own of course.

Now we should be able to start the gNodeB service and see the connection, let’s take a look,

We’ll start the gNodeB service from the UERANSIM directory by running the nr-gnb service with the config file we just configured in config/open5gs-gnb.yaml

$ build/nr-gnb -c config/open5gs-gnb.yaml

All going well you’ll see something like:

[2021-03-08 12:33:46.433] [ngap] [info] NG Setup procedure is successful

And if you’re running Wireshark you should see the NG-AP (N2) traffic as well;

If we tail the logs on the Open5GS AMF we should also see the connection too:

Configuring the UE Simulator

So with our gNodeB “On the air” next up we’ll connect a simulated UE to our simulated gNodeB.

We’ll leave the nr-gnb service running and open up a new terminal to start the UE with:

$ build/nr-gnb -c config/open5gs-gnb.yaml

But if you run it now, you’ll just see errors regarding the PLMN search failing,

So why is this? We need to tell our UE the IP of the gNodeB (In reality the UE would scan the bands to find a gNB to serve it, but we’re simulating hre).

So let’s correct this by updating the config file to point to the IP of our gNodeB, and trying again,

So better but not working, we see the RRC was released with error “FIVEG_SERVICES_NOT_ALLOWED”, so why is this?

A quick look at the logs on Open5Gs provides the answer,

Of course, we haven’t configured the subscriber in Open5Gs’s UDM/UDR.

So we’ll browse to the web interface for Open5GS HSS/UDR and add a subscriber,

We’ll enter the IMSI, K key and OP key (make sure you’ve selected OPc and not OP), and save. You may notice the values match the defaults in the Open5GS Web UI, just without the spaces.

Running the UE Simulator

So now we’ve got all this configured we can run the UE simulator again, this time as Sudo, and we should get a very different ouput;

$ build/nr-gnb -c config/open5gs-gnb.yaml

Now when we run it we should see the session come up, and a new NIC is present on the machine, uesimtun0,

We can now run commands like Ping and Curl and by specifying our special uesimtun0 interface, and the traffic will be encapsulated in GTP and pop out the other end.

Supporting UERANSIM

More advanced functionality is in the works though, so keep an eye on the UERANSIM GitHub page and contribute code if you can, and consider supporting them on Patreon if you can’t, they’re doing great work.

5GC for EPC Folks – User Plane Traffic

As the standardisation for 5G-SA has been completed and the first roll outs are happening, I thought I’d cover the basic architecture of the 5G Core Network, for people with a background in EPC/SAE networks for 4G/LTE, covering the key differences, what’s the same and what’s new.

This posts focuses on the User Plane side of things, there’s a similar post I’ve written here on the Control Plane side of things.

UPF – User Plane Forwarding

The UPF bridges the external networks (DNs) to the gNodeB serving the UE by encapsulating the traffic into GTP, which has been used in every network since GSM.

Like the P-GW the UPF takes traffic destined to/from external networks and passes it to/from subscribers.

In 5GC these external networks are now referred to as “DN” – Data Networks, instead of by the SGi reference point.

In EPC the Serving-Gateway’s intermediate function of routing traffic to the correct eNB is removed and instead this is all handled by the UPF, along with buffering packets for a subscriber in idle mode.

The idea behind this, is that by removing the S-GW removes extra hops / latency in the network, and allows users to be connected to the best UPF for their needs, typically one located close to the user.

However, there are often scenarios where an intermediate function is required – for example wanting to anchor a session to keep an IP Address allocated to one UPF associated with a user, while they move around the network. In this scenario a UPF can act as an “Session Anchor” (Akin to a P-GW), and pass through “Intermediate UPFs” (Like S-GWs).

Unlike the EPCs architecture, there is no limit to how many I-UPFs can be chained together between the Session Anchoring UPF and the gNB, and this chaining of UPFs allows for some funky routing options.

The UPF is dumb by design. The primary purpose is just to encapsulate traffic destined from external networks to subscribers into GTP-U packets and forward them onto the gNodeB serving that subscriber, and the same in reverse. Do one thing and do it well.

SMF – Session Management Function

So with dumb UPFs we need something smarter to tell them what to do.

Control of the UPFs is handled by the SMF – Session Management Function, which signals using PFCP down to the UPFs to tell them what to do in terms of setting up connections.

While GTP-U is used for handling user traffic, control plane traffic no longer uses GTPv2-C. Instead 5GC uses PFCP – Packet Forwarding Control Protocol. To get everyone warmed up to Control & User Plane separation 3GPP introduced as seen in CUPS into the EPC architecture in Release 14.

This means the interface between the SMF and UPF (the N4 interface) is more or less the same as the interface between a P-GW-C and a P-GW-U seen in CUPS.

When a subscriber connects to the network and has been authenticated, the AMF (For more info on the AMF see the sister post to this topic covering Control Plane traffic) requests the SMF to setup a connection for the subscriber.

Interworking with EPC

For deployments with an EPC and 5GC interworking between the two is of course required.

This is achieved first through the implementation of CUPS (Control & User Plane Separation) on the EPC, specifically splitting the P-GW into a P-GW-C for handing the Control Plane signalling (GTPv2c) and a P-GW-U for the User Plane traffic encapsulated into GTP.

The P-GW-C and P-GW-U communications using PFCP are essentially the same as the N4 interface (between the SMF and the UPF) so the P-GW-U is able to act as a UPF.

This means handovers between the two RATs / Cores is seamless as when moving from an LTE RAT and EPC to a 5G RAT and 5G Core, the same UPF/P-GW-U is used, and only the Control Plane signalling around it changes.

When moving from LTE to 5G RAT, the P-GW-C is replaced by the SMF,
When moving from 5G RAT to LTE, the SMF is replaced by the P-GW-C.
In both scenarios user plane traffic takes the same exit point to external Data Networks (SGi interface in EPC / N6 interface in 5GC).

Interfaces / Reference Points

N3 Interface

N3 interface connects the gNodeB user plane to the UPF, to transport GTP-U packets.

This is a User Plane interface, and only transports user plane traffic.

This is akin to the S1-UP interface in EPC.

N4 Interface

N4 interface connects the Session Management Function (SMF) control plane to the UPF, to setup, modify and delete UPF sessions.

It is a control plane interface, and does not transport User Plane traffic.

This interface relies on PFCP – Packet Forwarding Control Protocol.

This is akin to the SxB interface in EPC with CUPS.

N6 Interface

N6 interface connects the UPF to External Data Networks (DNs), taking packets destined for Subscribers and encapsulating them into GTP-U packets.

This is a User Plane interface, and only transports user plane traffic.

This is akin to the SGi interface in EPC.

N9 Interface

When Session Anchoring is used, and Intermediate-UPFs are used, the connection between these UPFs uses the N9 interface.

This is only used in certain scenarios – the preference is generally to avoid unnecessary hops, so Intermediate-UPF usage is to be avoided where possible.

As this is a User Plane interface, it only transports user plane traffic.

When used this would be akin to the S5 interface in EPC.

N11 Interface

SMFs need to be told when to setup / tear down connections, this information comes from the AMF via the N11 interface.

As this is a Control Plane interface, it only transports control plane traffic.

This is similar to the S11 interface between the MME and the S-GW in EPC, however it would be more like the S11 if the S11 terminated on the P-GW.

CUPS – Control and User Plane Separation in LTE & NR with PFCP (Sx & N4)

3GPP release 14 introduced the concept of CUPS – Control & User Plane Separation, and the Sx interface, this allows the control plane (GTP-C) functionality and the user plane (GTP-U) functionality to be separated, and run in a distributed fashion, allowing the node a user’s GTP-U traffic flows through to be in a different location to where the Control / Signalling traffic (GTP-C) flows.

In practice that means for an LTE EPC this means we split our P-GW and S-GW into a minimum of two network elements each.

A P-GW is split and becomes a P-GW-C that handles the P-GW Control Plane traffic (GTPv2-C) and a P-GW-U speaking GTP-U for our User Plane traffic. But the split doesn’t need to stop there, one P-GW-C could control multiple P-GW-Us, routing the user plane traffic. Sames goes for S-GW being split into S-GW-C and S-GW-U,

This would mean we could have a P-GW-U located closer to a eNB / User to reduce latency, by allowing GTP-U traffic to break out on a node closer to the user.

It also means we can scale better too, if we need to handle more data traffic, but not necessarily more control plane traffic, we can just add more P-GW-U nodes to handle this.

To manage this a new protocol was defined – PFCP – the Packet Forwarding Control Protocol. For LTE this is refereed to as the Sx reference point, it’ also reused in 5G-SA as the N4 reference point.

When a GTP-C “Create Session Request” comes into a P-GW for example from an S-GW, a PFCP “Session Establishment Request” is sent by the P-GW-C to the P-GW-U with much the same information that was in the GTP-C request, to setup the session.

So why split the Control and User Plane traffic if you’re going to just relay the GTP-C traffic in a different format?

That was my first question – the answer is that keeping the GTP-C interface ensures backward compatibility with older MMEs, PCRFs, charging systems, and allows a staged roll out and bolting on extra capacity.

GTP-C disappears entirely in 5G Standalone architecture and is replaced with the N4 interface, which uses PFCP for the Control Plan and GTP-U again.

Here’s a capture from Open5Gs core showing GTPv2C and PFCP in play.