Recently I’ve been working on open source Diameter Routing Agent implementations (See my posts on FreeDiameter).
With the hurdles to getting a DRA working with open source software covered, the next step was to get all my Diameter traffic routed via the DRAs, however I soon rediscovered a Kamailio limitation regarding support for Diameter Routing Agents.
You see, when Kamailio’s C Diameter Peer module makes a decision as to where to route a request, it looks for the active Diameter peers, and finds a peer with the suitable Vendor and Application IDs in the supported Applications for the Application needed.
Unfortunately, a DRA typically only advertises support for one application – Relay.
This means if you have everything connected via a DRA, Kamailio’s CDP module doesn’t see the Application / Vendor ID for the Diameter application on the DRA, and doesn’t route the traffic to the DRA.
The fix for this was twofold, the first step was to add some logic into Kamailio to determine if the Relay application was advertised in the Capabilities Exchange Request / Answer of the Diameter Peer.
I added the logic to do this and exposed this so you can see if the peer supports Diameter relay when you run “cdp.list_peers”.
With that out of the way, next step was to update the routing logic to not just reject the candidate peer if the Application / Vendor ID for the required application was missing, but to evaluate if the peer supports Diameter Relay, and if it does, keep it in the game.
I added this functionality, and now I’m able to use CDP Peers in Kamailio to allow my P-CSCF, S-CSCF and I-CSCF to route their traffic via a Diameter Routing Agent.
Next we’ll need to define our rt_pyform config, this is a super simple 3 line config file that specifies the path of what we’re doing:
DirectoryPath = "." # Directory to search
ModuleName = "script" # Name of python file. Note there is no .py extension
FunctionName = "transform" # Python function to call
The DirectoryPath directive specifies where we should search for the Python code, and ModuleName is the name of the Python script, lastly we have FunctionName which is the name of the Python function that does the rewriting.
Now let’s write our Python function for the transformation.
The Python function much have the correct number of parameters, must return a string, and must use the name specified in the config.
The following is an example of a function that prints out all the values it receives:
Note the order of the arguments and that return is of the same type as the AVP value (string).
We can expand upon this and add conditionals, let’s take a look at some more complex examples:
def transform(appId, flags, cmdCode, HBH_ID, E2E_ID, AVP_Code, vendorID, value):
print('[PYTHON]')
print(f'|-> appId: {appId}')
print(f'|-> flags: {hex(flags)}')
print(f'|-> cmdCode: {cmdCode}')
print(f'|-> HBH_ID: {hex(HBH_ID)}')
print(f'|-> E2E_ID: {hex(E2E_ID)}')
print(f'|-> AVP_Code: {AVP_Code}')
print(f'|-> vendorID: {vendorID}')
print(f'|-> value: {value}')
#IMSI Translation - if App ID = 16777251 and the AVP being evaluated is the Username
if (int(appId) == 16777251) and int(AVP_Code) == 1:
print("This is IMSI '" + str(value) + "' - Evaluating transformation")
print("Original value: " + str(value))
value = str(value[::-1]).zfill(15)
The above look at if the App ID is S6a, and the AVP being checked is AVP Code 1 (Username / IMSI ) and if so, reverses the username, so IMSI 1234567 becomes 7654321, the zfill is just to pad with leading 0s if required.
Now let’s do another one for a Realm Rewrite:
def transform(appId, flags, cmdCode, HBH_ID, E2E_ID, AVP_Code, vendorID, value):
#Print Debug Info
print('[PYTHON]')
print(f'|-> appId: {appId}')
print(f'|-> flags: {hex(flags)}')
print(f'|-> cmdCode: {cmdCode}')
print(f'|-> HBH_ID: {hex(HBH_ID)}')
print(f'|-> E2E_ID: {hex(E2E_ID)}')
print(f'|-> AVP_Code: {AVP_Code}')
print(f'|-> vendorID: {vendorID}')
print(f'|-> value: {value}')
#Realm Translation
if int(AVP_Code) == 283:
print("This is Destination Realm '" + str(value) + "' - Evaluating transformation")
if value == "epc.mnc001.mcc001.3gppnetwork.org":
new_realm = "epc.mnc999.mcc999.3gppnetwork.org"
print("translating from " + str(value) + " to " + str(new_realm))
value = new_realm
else:
#If the Realm doesn't match the above conditions, then don't change anything
print("No modification made to Realm as conditions not met")
print("Updated Value: " + str(value))
In the above block if the Realm is set to epc.mnc001.mcc001.3gppnetwork.org it is rewritten to epc.mnc999.mcc999.3gppnetwork.org, hopefully you can get a handle on the sorts of transformations we can do with this – We can translate any string type AVPs, which allows for hostname, realm, IMSI, Sh-User-Data, Location-Info, etc, etc, to be rewritten.
Having a central pair of Diameter routing agents allows us to drastically simplify our network, but what if we want to perform some translations on AVPs?
For starters, what is an AVP transformation? Well it’s simply rewriting the value of an AVP as the Diameter Request/Response passes through the DRA. A request may come into the DRA with IMSI xxxxxx and leave with IMSI yyyyyy if a translation is applied.
So why would we want to do this?
Well, what if we purchased another operator who used Realm X, and we use Realm Y, and we want to link the two networks, then we’d need to rewrite Realm Y to Realm X, and Realm X to Realm Y when they communicate, AVP transformations allow for this.
If we’re an MVNO with hosted IMSIs from an MNO, but want to keep just the one IMSI in our HSS/OCS, we can translate from the MNO hosted IMSI to our internal IMSI, using AVP transformations.
If our OCS supports only one rating group, and we want to rewrite all rating groups to that one value, AVP transformations cover this too.
There are lots of uses for this, and if you’ve worked with a bit of signaling before you’ll know that quite often these sorts of use-cases come up.
So how do we do this with freeDiameter?
To handle this I developed a module for passing each AVP to a Python function, which can then apply any transformation to a text based value, using every tool available to you in Python.
In the next post I’ll introduce rt_pyform and how we can use it with Python to translate Diameter AVPs.
Way back in part 2 we discussed the basic routing logic a DRA handles, but what if we want to do something a bit outside of the box in terms of how we route?
For me, one of the most useful use cases for a DRA is to route traffic based on IMSI / Username. This means I can route all the traffic for MVNO X to MVNO X’s HSS, or for staging / test subs to the test HSS enviroment.
FreeDiameter has a bunch of built in logic that handles routing based on a weight, but we can override this, using the rt_default module.
In our last post we had this module commented out, but let’s uncomment it and start playing with it:
In the above code we’ve uncommented rt_default and rt_redirect.
You’ll notice that rt_default references a config file, so we’ll create a new file in our /etc/freeDiameter directory called rt_default.conf, and this is where the magic will happen.
A few points before we get started:
This overrides the default routing priorities, but in order for a peer to be selected, it has to be in an Open (active) state
The peer still has to have advertised support for the requested application in the CER/CEA dialog
The peers will still need to have all been defined in the freeDiameter.conf file in order to be selected
So with that in mind, and the 5 peers we have defined in our config above (assuming all are connected), let’s look at some rules we can setup using rt_default.
Intro to rt_default Rules
The rt_default.conf file contains a list of rules, each rule has a criteria that if matched, will result in the specified action being taken. The actions all revolve around how to route the traffic.
So what can these criteria match on? Here’s the options:
Item to Match
Code
Any
*
Origin-Host
oh=”STR/REG”
Origin-Realm
or=”STR/REG”
Destination-Host
dh=”STR/REG”
Destination-Realm
dr=”STR/REG”
User-Name
un=”STR/REG”
Session-Id
si=”STR/REG”
rt_default Matching Criteria
We can either match based on a string or a regex, for example, if we want to match anything where the Destination-Realm is “mnc001.mcc001.3gppnetwork.org” we’d use something like:
#Low score to HSS02
dr="mnc001.mcc001.3gppnetwork.org" : dh="hss02" += -70 ;
Now you’ll notice there is some stuff after this, let’s look at that.
We’re matching anything where the destination-host is set to hss02 (that’s the bit before the colon), but what’s the bit after that?
Well if we imagine that all our Diameter peers are up, when a message comes in with Destination-Realm “mnc001.mcc001.3gppnetwork.org”, looking for an HSS, then in our example setup, we have 4 HHS instances to choose from (assuming they’re all online).
In default Diameter routing, all of these peers are in the same realm, and as they’re all HSS instances, they all support the same applications – Our request could go to any of them.
But what we set in the above example is simply the following:
If the Destination-Realm is set to mnc001.mcc001.3gppnetwork.org, then set the priority for routing to hss02 to the lowest possible value.
So that leaves the 3 other Diameter peers with a higher score than HSS02, so HSS02 won’t be used.
Let’s steer this a little more,
Let’s specify that we want to use HSS01 to handle all the requests (if it’s available), we can do that by adding a rule like this:
#Low score to HSS02
dr="mnc001.mcc001.3gppnetwork.org" : dh="hss02" += -70 ;
#High score to HSS01
dr="mnc001.mcc001.3gppnetwork.org" : dh="hss01" += 100 ;
But what if we want to route to hss-lab if the IMSI matches a specific value, well we can do that too.
#Low score to HSS02
dr="mnc001.mcc001.3gppnetwork.org" : dh="hss02" += -70 ;
#High score to HSS01
dr="mnc001.mcc001.3gppnetwork.org" : dh="hss01" += 100 ;
#Route traffic for IMSI to Lab HSS
un="001019999999999999" : dh="hss-lab" += 200 ;
Now that we’ve set an entry with a higher score than hss01 that will be matched if the username (IMSI) equals 001019999999999999, the traffic will get routed to hss-lab.
But that’s a whole IMSI, what if we want to match only part of a field?
Well, we can use regex in the Criteria as well, so let’s look at using some Regex, let’s say for example all our MVNO SIMs start with 001012xxxxxxx, let’s setup a rule to match that, and route to the MVNO HSS with a higher priority than our normal HSS:
#Low score to HSS02
dr="mnc001.mcc001.3gppnetwork.org" : dh="hss02" += -70 ;
#High score to HSS01
dr="mnc001.mcc001.3gppnetwork.org" : dh="hss01" += 100 ;#Route traffic for IMSI to Lab HSS
un="001019999999999999" : dh="hss-lab" += 200 ;
#Route traffic where IMSI starts with 001012 to MVNO HSS
un=["^001012.*"] : dh="hss-mvno-x" += 200 ;
Let’s imagine that down the line we introduce HSS03 and HSS04, and we only want to use HSS01 if HSS03 and HSS04 are unavailable, and only to use HSS02 no other HSSes are available, and we want to split the traffic 50/50 across HSS03 and HSS04.
Firstly we’d need to add HSS03 and HSS04 to our FreeDiameter.conf file:
Then in our rt_default.conf we’d need to tweak our scores again:
#Low score to HSS02
dr="mnc001.mcc001.3gppnetwork.org" : dh="hss02" += 10 ;
#Medium score to HSS01
dr="mnc001.mcc001.3gppnetwork.org" : dh="hss01" += 20 ;
#Route traffic for IMSI to Lab HSS
un="001019999999999999" : dh="hss-lab" += 200 ;
#Route traffic where IMSI starts with 001012 to MVNO HSS
un=["^001012.*"] : dh="hss-mvno-x" += 200 ;
#High Score for HSS03 and HSS04dr="mnc001.mcc001.3gppnetwork.org" : dh="hss02" += 100 ;dr="mnc001.mcc001.3gppnetwork.org" : dh="hss04" += 100 ;
One quick tip to keep your logic a bit simpler, is that we can set a variety of different values based on keywords (listed below) rather than on a weight/score:
Behaviour
Name
Score
Do not deliver to peer (set lowest priority)
NO_DELIVERY
-70
The peer is a default route for all messages
DEFAULT
5
The peer is a default route for this realm
DEFAULT_REALM
10
REALM
15
Route to the specified Host with highest priority
FINALDEST
100
Rather than manually specifying the store you can use keywords like above to set the value
In our next post we’ll look at using FreeDiameter based DRA in roaming scenarios where we route messages across Diameter Realms.
FreeDiameter has been around for a while, and we’ve covered configuring the FreeDiameter components in Open5GS when it comes to the S6a interface, so you may have already come across FreeDiameter in the past, but been left a bit baffled as to how to get it to actually do something.
FreeDiameter is a FOSS implimentation of the Diameter protocol stack, and is predominantly used as a building point for developers to build Diameter applications on top of.
But for our scenario, we’ll just be using plain FreeDiameter.
So let’s get into it,
You’ll need FreeDiameter installed, and you’ll need a certificate for your FreeDiameter instance, more on that in this post.
Once that’s setup we’ll need to define some basics,
Inside freeDiameter.conf we’ll need to include the identity of our DRA, load the extensions and reference the certificate files:
Answer Question 1: Because they make things simpler and more flexible for your Diameter traffic. Answer Question 2: With free software of course!
All about DRAs
But let’s dive a little deeper. Let’s look at the connection between an MME and an HSS (the S6a interface).
We configure the Diameter peers on MME1 and HSS01 so they know about each other and how to communicate, the link comes up and presto, away we go.
But we’re building networks here! N+1 redundancy and all that, so now we have two HSSes and two MMEs.
Okay, bit messy, but that’s okay…
But then our network grows to 10 MMEs, and 3 HSSes and you can probably see where this is going, but let’s drive the point home.
Now imagine once you’ve set all this up you need to do some maintenance work on HSS03, so need to shut down the Diameter peer on 10 different MMEs in order to isolate it and deisolate it.
The problem here is pretty evident, all those links are messy, cumbersome and they just don’t scale.
If you’re someone with a bit of networking experience (and let’s face it, you’re here after all), then you’re probably thinking “What if we just had a central system to route all the Diameter messages?”
An Agent that could Route Diameter, a Diameter Routing Agent perhaps…
By introducing a DRA we build Diameter peer links between each of our Diameter devices (MME / HSS, etc) and the DRA, rather than directly between each peer.
Then from the DRA we can route Diameter requests and responses between them.
Let’s go back to our 10x MME and 3x HSS network and see how it looks with a DRA instead.
So much cleaner!
Not only does this look better, but it makes our life operating the network a whole lot easier.
Each MME sends their S6a traffic to the DRA, which finds a healthy HSS from the 3 and sends the requests to it, and relays the responses as well.
We can do clever load balancing now as well.
Plus if a peer goes down, the DRA detects the failure and just routes to one of the others.
If we were to introduce a new HSS, we wouldn’t need to configure anything on the MMEs, just add HSS04 to the DRA and it’ll start getting traffic.
Plus from an operations standpoint, now if we want to to take an HSS offline for maintenance, we just shut down the link on the HSS and all HSS traffic will get routed to the other two HSS instances.
In our next post we’ll talk about the Routing part of the DRA, how the decisions are made and all the nuances, and then in the following post we’ll actually build a DRA and start routing some traffic around!
Even if you’re not using TLS in your FreeDiameter instance, you’ll still need a certificate in order to start the stack.
Luckily, creating a self-signed certificate is pretty simple,
Firstly we generate your a private key and public certificate for our required domain – in the below example I’m using dra01.epc.mnc001.mcc001.3gppnetwork.org, but you’ll need to replace that with the domain name of your freeDiameter instance.
If you’re using freeDiameter as part of another software stack (Such as Open5Gs) the below filenames will contain the config for that particular freeDiameter components of the stack:
This is the simplest of the Diameter agents, but also probably the most common. The Diameter Relay agent does not look at the contents of the AVPs, it just routes messages based on the Application ID or Destination realm.
A Diameter Relay Agent does not change any AVPs except routing AVPs.
DRAs are transaction aware, but not dialog aware. This means they know if the Diameter request made it to the destination, but have no tracking of getting a response.
DRAs are common as a central hub for all Diameter hub in a network. This allows for a star topology where every Diameter service connects to a central DRA (typically two DRAs for redundancy) for a central place to manage Diameter routing, instead of having to do a full-mesh topology, which would be a nightmare on larger networks.
A Diameter Edge Agent is a special DRA that sits on the border between two networks and acts as a gateway between them.
Imagine a roaming exchange scenario, where each operator has to expose their core Diameter servers or DRAs to all the other operators they have roaming agreements with. Like we saw with the DRA to do a full-mesh style connection arrangement would be a mess, and wouldn’t allow internal changes inside the network without significant headaches.
Instead by putting a Diameter Edge Agent at the edge of the network, the operators who wish to access our Diameter information for roaming, only need to connect to a single point, and we can change whatever we like on the inside of the network, adding and removing servers, without having to update our roaming information (IR 21).
We can also strictly enforce security policies on rate limits and admission control, centrally, for all connections in from other operators.
Diameter Proxy Agent
The Diameter Proxy Agent does everything a DRA does, and more!
The Diameter Proxy Agent is application aware, meaning it can decode the AVPs and make decisions based upon the contents of the AVPs. It’s also able to edit / add / delete AVPs and Sub-AVPs.
These are useful for interconnect scenarios where you might need to re-write the value of an AVP, or translate a realm etc, on a Diameter request/response journey.
Diameter Translation Agent
Diameter Translation agents are used for translating between protocols, for example Diameter into MAP for GSM authentication, or into HTTP for 5G authentication.
For 5GC a new network element – the “Binding Support Function” (BSF) is introduced to translate between HTTP for 5G and Diameter for LTE, however this can be thought of as another Diameter Translation Agent.
I’d been trying for some time to get Kamailio acting as a Diameter Routing Agent with mixed success, and eventually got it working, after a few changes to the codebase of the ims_diameter_server module.
It is rather unstable, in that if it fails to dispatch to a Diameter peer, the whole thing comes crumbling down, but incoming Diameter traffic is proxied off to another Diameter peer, and Kamailio even adds an extra AVP.
Having used Kamailio for so long I was really hoping I could work with Kamailio as a DRA as easily as I do for SIP traffic, but it seems the Diameter module still needs a lot more love before it’ll be stable enough and simple enough for everyone to use.
I created a branch containing the fixes I made to make it work, and with an example config for use, but use with caution. It’s a long way from being production-ready, but hopefully in time will evolve.
Diameter is used extensively in 3GPP networks (Especially LTE) to provide the AAA services.
The Diameter protocol is great, and I’ve sung it’s praises before, but one issue operators start to face is that there are a lot of diameter peers, each of which needs a connection to other diameter peers.
This diagram is an “Overview” showing one of each network element – In reality almost all network elements will exist more than once for redundancy and scalability.
What you start to end up with is a rats nest of connections, lines drawn everywhere and lots of manual work and room for human error when it comes to setting up the Diameter Peer relationships.
Let’s say you’ve got 5x MME, 5x PCRF, 2x HSS, 5x S-SCSF and 5x Packet Gateways, each needing Diameter peer relationships setup, it starts to get really messy really quickly.
Enter the Diameter Routing Agent – DRA.
Now each device only needs a connection to the DRA, which in turn has a connection to each Diameter peer. Adding a new MME doesn’t mean you need to reconfigure your HSS, just connect the MME to the DRA and away you go.
I’ll cover using Kamailio to act as a Diameter routing agent in a future post.
Want more telecom goodness?
I have a good old fashioned RSS feed you can subscribe to.