Tag Archives: Keys


We’ve already touched on how subscribers are authenticated to the network, how the network is authenticated to subscribers and how the key hierarchy works for encryption of user data and control plane data.

If the IMSI was broadcast in the clear over the air, anyone listening would have the unique identifier of the subscriber nearby and be able to track their movements.

We want to limit the use of the IMSI over the air to a minimum.

During the first exchange the terminal is forced to send it’s IMSI, it’s the only way we can go about authenticating to the network, but once the terminal is authenticated and encryption of the radio link has been established, the network allocates a temporary identifier to the terminal, called the Temporary Mobile Subscriber Identity (TMSI) by the serving MME.

The TMSI is given to the terminal once encryption is setup, so only the network and the terminal know the mapping between IMSI and TMSI.

The TMSI is used for all future communication between the Network and the Terminal, hiding the IMSI.

The TMSI can be updated / changed at regular intervals to ensure the IMSI-TMSI mapping cannot be ascertained by a process of elimination.

The TMSI is short – only 4 bytes long – and this only has significance for the serving MME.

For the network to ascertain what MME is serving what TMSI the terminal is also assigned a Globally Unique Temporary (UE) Identity (GUTI), to identify the MME that knows the TMSI to IMSI mapping.

The GUTI is made up of the MNC/MCC combination, then an MME group ID to identify the MME group the serving MME is in, a MME code to identify the MME that allocated the TMSI and finally the TMSI itself.

The decision to use the TMSI or GUTI in a dialog is dependant on the needs of the dialog and what information both sides have. For example in an MME change the GUTI is needed so the original IMSI can be determined by the new MME, while in a normal handover the TMSI is enough.

LTE (4G) – EUTRAN – Key Distribution and Hierarchy

We’ve talked a bit in the past few posts about keys, K and all it’s derivatives, such as Kenc, Kint, etc.

Each of these is derived from our single secret key K, known only to the HSS and the USIM.

To minimise the load on the HSS, the HSS transfers some of the key management roles to the MME, without ever actually revealing what the secret key K actually is to the MME.

This means the HSS is only consulted by the MME when a UE/Terminal attaches to the network, and not each time it attaches to different cell etc.

When the UE/Terminal first attaches to the network, as outlined in my previous post, the HSS also generates an additional key it sends to the MME, called K-ASME.

K-ASME is the K key derived value generated by the HSS and sent to the MME. It sands for “Access Security Management Entity” key.

When the MME has the K-ASME it’s then able to generate the other keys for use within the network, for example the Kenb key, used by the eNodeB to generate the keys required for communications.

The USIM generates the K-ASME itself, and as it’s got the same input parameters, the K-ASME generated by the USIM is the same as that generated by the HSS.

The USIM can then give the terminal the K-ASME key, so it can generate the same Kenb key required to generate keys for complete communications.

Showing Kamse generation sequence in LTE.

Image sourced from IMTx: NET02x course on Edx,